Multireference Ab Initio Study of the Ground and Low-Lying Excited States of Cr(CO)2 and Cr(CO)3

Joonghan Kim,*‡ Jeongho Kim,§ and Hyotcherl Ihee*∥

†Department of Chemistry, The Catholic University of Korea, Bucheon, 420-743, Republic of Korea
‡Department of Chemistry, Inha University, Incheon, 402-751, Republic of Korea
§Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon, 305-701, Republic of Korea
∥Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea

ABSTRACT: We investigate the ground and low-lying excited states of unsaturated chromium carbonyls, Cr(CO)2 and Cr(CO)3, using multiconfigurational ab initio perturbation theory. Unlike other chromium carbonyls, there are discrepancies between the experiment and theory on the identity of the ground states of Cr(CO)2 and Cr(CO)3. From multireference ab initio calculations considering the full valence orbitals of Cr(CO)2 and Cr(CO)3, the differences in the molecular structures of their various electronic states are explained by the electronic structure analysis. On the basis of the result from CASPT2 and MS-CASPT2 calculations, we propose that the ground states of Cr(CO)2 and Cr(CO)3 are the 5Πg and 1A1 states, respectively, addressing the ambiguity regarding their ground states. In addition, the multiconfigurational ab initio perturbation theory calculations reveal that (1) the energy gaps between the ground and first low-lying excited states of Cr(CO)2 and Cr(CO)3 are quite small and (2) the first low-lying excited states of Cr(CO)2 and Cr(CO)3 have the same spin multiplicities as the ground states of CrCO and Cr(CO)2, respectively, which are the products of ligand dissociation. As a result, the apparent spin-forbidden dissociation of Cr(CO)2 and Cr(CO)3 into CrCO and Cr(CO)2, respectively, are likely to be facilitated by thermal excitation of the ground states of Cr(CO)2 and Cr(CO)3 into their first low-lying excited states, which then actually undergoes the spin-allowed dissociation to the ground states of CrCO and Cr(CO)2 with the same spin multiplicities.

1. INTRODUCTION

Transition metal carbonyl complexes, ubiquitous building blocks in organometallic chemistry, play important roles in many chemical reactions and industrial processes.1−5 Among them, Cr(CO)6 which can be dissociated into various photoproducts by analyzing the data measured by ultrafast associated reaction pathways. To understand the photochemistry of Cr(CO)6, which can be dissociated into various photoproducts (including transient intermediates) and the various DFT functionals have been employed to study Cr(CO)6, giving the results comparable to the experimental ones.21,22 The ground states of Cr(CO)6, Cr(CO)3, and Cr(CO)2 calculated using various DFT methods are consistent with the experimental findings.21 Also, the ground state of CrCO was identified as the 5A1 state, which is consistent with the experimental result, as well as the result from coupled cluster singles and doubles with perturbed triples (CCSD(T)),20 a high-level single-reference ab initio method.22 In contrast to these Cr compounds, the ground states of Cr(CO)2 and Cr(CO)3 have not been clearly identified yet. The methods of DFT and CCSD (or CCSD(T)), which work well for other Cr carbonyl complexes, do not give the results consistent with the experimental findings for Cr(CO)2 and Cr(CO)3.21,32,39,71 In addition, it was found that the ground state determined by geometry optimization varies depending on the computational method used for calculation.21 For example, the ground state of Cr(CO)2 was predicted to be 5Πg and 5Πu by DFT and CCSD(T), respectively.21,32 In contrast, a recent experiment using infrared spectroscopy on Cr(CO)2 in the solid argon and neon matrix detected the 5A1 state in C2v symmetry, which is a bent structure, as the ground state.32 For Cr(CO)3, the predicted ground state also changes depending on the applied computational method. For example, generalized gradient approximation (GGA) DFT functionals and Møller–Plesset second-order

Received: January 31, 2013
Revised: April 14, 2013
Published: April 15, 2013
perturbation theory (MP2) provided the \(^1\)A\(_1 \) state in C\(_\text{v} \) symmetry as the ground state of Cr(CO)\(_3 \). By contrast, hybrid DFT and CCSD methods suggested that the \(^3\)B\(_2 \) state in C\(_\text{v} \) symmetry lies lower in energy than the \(^1\)A\(_1 \) state.\(^{21}\) Moreover, the reference wave functions of the single-reference methods are substantially contaminated in their spins according to the expectation value for square of the spin angular momentum, \(\langle S^2 \rangle \). The spin contaminations of the single-reference ab initio methods such as MP2 and CCSD(T) are even worse than those of DFT.\(^{21}\)

Considering high nondynamic correlation of Cr atom and the failure of DFT and single-reference ab initio methods for Cr(CO)\(_2 \) and Cr(CO)\(_3 \), the quantum chemical calculations based on the multireference wave function will be required to identify their ground states accurately. In addition, the electronic structure analysis is necessary for a better understanding of the nature of the bonding between metal and carbonyl. In the present work, we investigate the ground and low-lying excited states of Cr(CO)\(_2 \) and Cr(CO)\(_3 \) using the multireference ab initio methods, as well as DFT. We consider full valence orbitals of Cr(CO)\(_2 \) and Cr(CO)\(_3 \) in the multireference ab initio calculations and analyze their electronic structures to clarify their bonding nature. The calculated results are compared with the experimental results, and the discrepancy between the calculation and the experiment are discussed. In addition, the spin-forbidden reaction of Cr(CO)\(_2 \) and Cr(CO)\(_3 \) in the multireference \(\text{ab initio} \) work, we investigate the ground and low-lying excited states of Cr(CO)\(_2 \) and Cr(CO)\(_3 \), respectively, that is, ANO-RCC-QZ+TZ basis set. In all CASPT2 and MS-CASPT2 calculations, the standard IPEA shift value \((0.25 \text{ au}) \) was used for the zeroth-order Hamiltonian.

2. COMPUTATIONAL DETAILS

We used complete active space self-consistent field (CASSCF)\(^{72} \) theory to treat the nondynamic correlation effect. Ten and twelve active electrons were distributed in twelve and fifteen active orbitals for CASSCF calculations of Cr(CO)\(_2 \) and Cr(CO)\(_3 \), respectively. In other words, CAS(10,12) and CAS(12,15) were used for Cr(CO)\(_2 \) and Cr(CO)\(_3 \), respectively. These active orbitals contain five \(d \) and one \(s \) orbitals of Cr and all \(\pi^* \) and \(\sigma \) orbitals of CO molecules; the full valence orbitals of Cr(CO)\(_2 \) and Cr(CO)\(_3 \) were considered in CASSCF calculations. To consider the dynamic correlation effect, the multiconfigurational second-order perturbation theory, CASPT2\(^{73,74} \) and multistate CASPT2 (MS-CASPT2)\(^{75} \) methods were used. In all CASPT2 and MS-CASPT2 calculations, the standard IPEA shift value \((0.25 \text{ au}) \) was used for the zeroth-order Hamiltonian.

The CASPT2 was used for all states of Cr(CO)\(_3 \): \(^1\)A\(_1 \) \((^1\Lambda \), the actual calculations were performed using C\(_v \) symmetry because the \(^1\)A\(_1 \) state in C\(_v \) symmetry correlates to the \(^1\Lambda \) state in C\(_v \) symmetry), \(^3\)B\(_2 \), \(^3\)A\(_2 \) \((^3\Lambda \), the actual calculations were performed using C\(_{2v} \) symmetry because the \(^3\Lambda \) state in D\(_{3h} \) symmetry correlates to the \(^3\)B\(_1 \) state in C\(_{2v} \) symmetry). The \(^3\)A\(_1 \) and \(^3\)A\(_2 \) states of Cr(CO)\(_2 \) were also calculated using CASPT2 method. We note that, for the \(^3\)I\(_1 \) and \(^3\)I\(_3 \) states of Cr(CO)\(_2 \), with linear structure, the actual calculations were performed using C\(_{2v} \) symmetry to ensure the degeneracy of the states with \(\Lambda \neq 0 \). Therefore, for \(^3\)I\(_1 \) and \(^3\)I\(_3 \) states of Cr(CO)\(_2 \), we used state-average CASSCF to generate the reference wave functions and then MS-CASPT2 method. The 1s, 2s, and 2p electrons of Cr and 1s electrons of C and O were not correlated in all the CASPT2 and MS-CASPT2 calculations. In the (MS-)CASPT2 calculations, the quadruple \([7s5p4d3f2g] \) and triple-\(\zeta^5 \) \([4s3p2d1f] \) level of ANO-RCC\(^{28} \) basis sets were used for Cr and other atoms (C and O), respectively, that is, ANO-RCC-QZ+TZ basis set. In all of the (MS-)CASPT2 calculations, Douglas-Kroll-Hess second-order (DKH2) method was used to treat the scalar relativistic effect.\(^{77,78} \) The reliability of theoretical methods used for Cr in this work was already examined in a previous study;\(^{79} \) CASPT2/ANO-RCC well reproduced the ionization potential and electron affinity of Cr atom with the discrepancy of less than 0.14 eV. We also checked the validity of the theoretical level for CO molecule by calculating the electron affinity (EA) of CO. The calculation of electron affinity of CO has been controversial because of discrepancy with the experimental result.\(^{80} \) However, the EA calculated by CASPT2 is close to the value obtained from a high-level theoretical method (multireference configuration interaction, MRCI with very large basis sets). The full details of calculating the EA of CO are described in the Supporting Information. The geometry optimizations for Cr(CO)\(_2 \) and Cr(CO)\(_3 \) were performed using CASSCF, CASPT2, and MS-CASPT2 methods. To refine the energetics, we increased the level of calculation by changing the basis sets of C and O to quadruple-\(\zeta^5 \) (ANO-RCC-QZ) in the single-point energy calculations. In addition, to test the basis-set dependence, we also used the aug-cc-pVQZ (AVQZ)-DK\(^{81} \) \([9s8p6d4f3g] \) (DK means contraction coefficients optimized for DKH calculation. The \(h \) functions were excluded to reduce the computation time.) and aug-cc-pVTZ (AVTZ)-DK, \([5s4p3d2f] \) all-electron basis sets for Cr and other atoms (C and O), respectively, in the single-point (MS-)CASPT2 calculations. As a result, the performance of AVQZ+AVTZ-DK is almost the same as that of ANO-RCC-QZ+TZ. All CASSCF and (MS-)CASPT2 calculations were performed using the Molcas6.4 program.\(^{82} \) For comparison, we also performed DFT and MP2 calculations for Cr(CO)\(_2 \) and Cr(CO)\(_3 \). The computational details of DFT and MP2 calculations are described in the Supporting Information.

3. RESULTS AND DISCUSSION

As mentioned above, we used CASSCF, CASPT2, MS-CASPT2, DFT, and MP2 methods for geometry optimization and energy calculation. We found that the result varies depending on the applied method. The molecular structures and energetics obtained by various methods are compared and discussed in detail in the Supporting Information, and here we focus on the result from the CASPT2 and MS-CASPT2 calculations, which give the most reliable results.

A. Cr(CO)\(_2 \): Electronic Structure of Cr(CO)\(_2 \)

The molecular structures of Cr(CO)\(_2 \) are shown in Figure 1 and their optimized
The structures of \(^3\text{A}_2 \) and \(^5\text{A}_1 \) states are very different from each other (see Table 1). For example, the C–Cr–C angle of the \(^3\text{A}_2 \) state (72.4° at the CASPT2 level) is much smaller than that of the \(^5\text{A}_1 \) state (107.8°), which can be explained by the difference in their electronic configurations. The major electronic configuration of the \(^3\text{A}_2 \) state can be converted to that of the \(^5\text{A}_1 \) state by exciting one electron from \(b_{1g(1)} \) to \(b_{1g(2)} \). In other words, in the \(^3\text{A}_2 \) state, two electrons occupy the \(b_{1g(1)} \) orbital, resulting in strong overlap between the orbitals of two C atoms (see Figure S1a in the Supporting Information). This strong interaction between the C atoms accounts for the striking difference between the C–Cr–C angles of the \(^3\text{A}_2 \) and \(^5\text{A}_1 \) states. In addition, the second electronic configuration of the \(^3\text{A}_2 \) state supports the smaller C–Cr–C angle as well. The second electronic configuration of the \(^3\text{A}_2 \) state can be generated from the major configuration of the \(^3\text{A}_2 \) state by exciting two electrons from \(b_{1g(1)} \) to \(b_{2g(1)} \). As shown in Figure S1a in the Supporting Information, despite the antibonding between Cr and C atoms, the \(b_{1g(2)} \) orbital also shows strong overlap between two C atoms, thus contributing to the smaller C–Cr–C bond angle of the \(^3\text{A}_2 \) state.

Besides the C–Cr–C angle, the length of the Cr–C bond is different between the \(^3\text{A}_2 \) and \(^5\text{A}_1 \) states, that is, the Cr–C bond is longer in the \(^3\text{A}_2 \) state than in the \(^5\text{A}_1 \) state. In all of the minor electronic configurations of both \(^3\text{A}_2 \) and \(^5\text{A}_1 \) states, Cr–C π* orbitals with antibonding character are occupied. The configurational interaction (CI) coefficients of the minor electronic configurations of the \(^3\text{A}_2 \) state are smaller than those of the \(^5\text{A}_1 \) state. As a result, those antibonding orbitals contribute less to the wave function of the \(^3\text{A}_2 \) state, thus leading to longer Cr–C bond lengths in the \(^3\text{A}_2 \) state than in the \(^5\text{A}_1 \) state.

The reference wave functions of the \(^3\Pi_u \) and \(^3\Pi_g \) states in MS-CASPT2 calculations are shown in eqs 3 and 4, respectively. The order of MOs in the wave functions of the two states is shown in Figure S1b in the Supporting Information.

\[
\Psi(\text{\scriptsize 3}\Pi_u) = -0.884122 + ++002 + 0000
\]
\[
-0.211122 + +++++0 + +++00 - 0.150122 + ++00
+ 2000 - 0.132122 + +++00 + 0020 \ldots
\]
\[
\Psi(\text{\scriptsize 3}\Pi_g) = 0.964122 + +++0 + +00 + 0
+ 0.111122 + +++0 + 00 + 00 - 0.101122 + ++000
++ +00 + 0.096122 + ++00 + 00 + 00 \ldots
\]

The \(^3\Pi_u \) and \(^3\Pi_g \) states are different in their structures, which can also be explained by the difference in their electronic configurations. The major electronic configuration (92.9%) of the \(^3\Pi_u \) state can be prepared from the major configuration (78.1%) of the \(^3\Pi_g \) state by exciting one electron from the Cr–C π orbital (\(\pi_{u(1)} \)) to the nonbonding orbital (\(\pi_{\sigma(1)} \)). As a result, the \(^3\Pi_u \) state has longer Cr–C bond than the \(^3\Pi_g \) state.

Ground State of Cr(CO)\(_2\). As shown in Table 1, the results from CASPT2 and MS-CASPT2 calculations show that the ground state of Cr(CO)\(_2\) in the gas phase is the \(^3\Pi_u \) state, which has a linear structure. (For comparison, CAS(10,12) predict the \(^3\Pi_u \) state as the ground state of Cr(CO)\(_2\). However, this result from the CASSCF calculation is not reliable because of the lack of dynamic correlation effect in CASSCF.) However, in a recent infrared experiment in Ar and Ne matrix environment, only the bent structure of Cr(CO)\(_2\) with two C–O stretching bands was detected.\(^{32}\) The authors of this study performed DFT calculations (BP86, one of GGA functional) to support the

Table 1. Optimized Geometrical Parameters (Bond Lengths in Å and Bond Angles in Degree) and the Relative Energies, \(\Delta E \) (in kcal/mol), of the \(^3\Pi_u \) and \(^3\Pi_g \) (B) and \(^3\Pi_u \) (B) States of Cr(CO)\(_2\)\(^a\)

<table>
<thead>
<tr>
<th></th>
<th>CAS(10,12)</th>
<th>(MS-)CASPT2(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r(\text{Cr–C}))</td>
<td>1.842</td>
<td>1.823</td>
</tr>
<tr>
<td>(r(\text{C–O}))</td>
<td>1.133</td>
<td>1.165</td>
</tr>
<tr>
<td>(\angle \text{CCrC})</td>
<td>76.8</td>
<td>72.4</td>
</tr>
<tr>
<td>(\angle \text{CrCO})</td>
<td>176.4</td>
<td>175.3</td>
</tr>
<tr>
<td>(\Delta E)</td>
<td>0.2</td>
<td>16.3 (16.7) [165]</td>
</tr>
<tr>
<td>(^3\Pi_u / ^3\Pi_g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r(\text{Cr–C}))</td>
<td>1.972</td>
<td>1.970</td>
</tr>
<tr>
<td>(r(\text{C–O}))</td>
<td>1.121</td>
<td>1.150</td>
</tr>
<tr>
<td>(\angle \text{CCrC})</td>
<td>104.3</td>
<td>107.8</td>
</tr>
<tr>
<td>(\angle \text{CrCO})</td>
<td>175.2</td>
<td>176.2</td>
</tr>
<tr>
<td>(\Delta E)</td>
<td>3.6</td>
<td>10.5 (9.4) [106]</td>
</tr>
<tr>
<td>(^3\Pi_g / ^3\Pi_u)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r(\text{Cr–C}))</td>
<td>2.005</td>
<td>1.958</td>
</tr>
<tr>
<td>(r(\text{C–O}))</td>
<td>1.119</td>
<td>1.151</td>
</tr>
<tr>
<td>(\Delta E)</td>
<td>0.0</td>
<td>0.0 (0.0) [00]</td>
</tr>
</tbody>
</table>

\(^a\)The related molecular structures of Cr(CO)\(_2\) are shown in Figure 1. \(^b\)Relative energies are with respect to the \(^3\Pi_g \) state. \(^c\)Values in parentheses were calculated by (MS-)CASPT2/ANO-RCC-QZ// (MS-)CASPT2/ANO-RCC-QZ+TZ. Values in square brackets were calculated by (MS-)CASPT2/AVQZ+AVTZ-DK//(MS-)CASPT2/ANO-RCC-QZ+TZ.
experimental result, but their BP86 calculations showed that the $^3\Pi_g$ state (linear structure) is the ground state. To address this discrepancy, they considered two possibilities in that work. First, if the theoretical level (BP86) used in that work is sufficiently high to calculate the electronic structure of Cr(CO)$_2$, the $^3\Pi_g$ state must be the ground state of Cr(CO)$_2$ in the gas phase, but the bent structure ($^1\Sigma_g^+$) might become more stable than the linear one ($^3\Pi_g$) in solid Ar and Ne due to interaction of the Cr center with the solid matrix. Second, if the bent structure observed in the experiment is indeed the ground state, more accurate calculation (than DFT) should give the $^1\Sigma_g^+$ state as the ground state. However, according to our calculated results using more accurate (MS-)CASPT2 (see Table 1) methods, the $^3\Pi_g$ state is still predicted to be the ground state of Cr(CO)$_2$, ruling out the second possibility. Also, the energy difference between the $^3\Pi_g$ and $^1\Pi_u$ states is further reduced (9.4 kcal/mol, see Table 1), which is acceptable as the interaction energy between metal and noble gas. In addition, the energy gap between the $^3\Sigma_g^+$ and $^1\Pi_u$ states of Cr(CO)$_2$ is the $^1\Pi_u$ state as the ground state. However, according to our calculated results using more accurate (MS-)CASPT2 (see Table 1) methods, the $^3\Pi_g$ state is still predicted to be the ground state of Cr(CO)$_2$, ruling out the second possibility. Also, the energy difference between the $^3\Pi_g$ and $^1\Pi_u$ states is further reduced (9.4 kcal/mol, see Table 1), which is acceptable as the interaction energy between metal and noble gas. In this case, it is possible that the $^1\Pi_u$ state lies above the $^3\Pi_g$ state. Small energy gap between the $^1\Pi_u$ and $^3\Pi_g$ states indicates that the $^1\Pi_u$ state can coexist with the $^3\Pi_g$ state because their energy difference may be overcome readily by thermal excitation. In this case, it is possible that the C–O stretching mode of 1914 cm$^{-1}$ frequency arises from the $^3\Pi_g$ state instead of the $^1\Pi_u$ state, which is in agreement with the assignment from the previous study. We examined this possibility by calculating vibrational frequencies of each state and the detailed discussion is presented in the Supporting Information. According to the results, we can conclude that 1914 cm$^{-1}$ mode observed in the transient absorption experiment is not from the C–O stretching of the $^3\Pi_g$ state but from the $^1\Pi_u$ state, supporting the assignment by Andrews et al. According to these results, to address nearly degenerate states, such as the $^3\Pi_g$ and $^1\Pi_u$ states of Cr(CO)$_2$ and calculate the electronic states of linear molecules ($\Lambda \neq 0$) properly, multiconfigurational method including dynamic electron correlation effect, for example CASPT2, is necessary.

B. Cr(CO)$_3$. Electronic Structure of Cr(CO)$_3$. The molecular structures of Cr(CO)$_3$ are shown in Figure 1 and their optimized geometrical parameters are summarized in Table 2. The active orbitals of CAS(12,15) calculations for the $^1\Sigma_g^+$ ($^1A'$) state and the $^3\Sigma_u^+$ (3B_1), $^3\Pi_u$ (3B_2), and $^1\Pi_u$ (1B_1) states are depicted in Figures S2a and S2b in the Supporting Information, respectively. The reference wave function of the $^1\Sigma_g^+$ ($^1A'$) state of Cr(CO)$_3$ is shown in eq 5 and the order of MOs in the wave function is shown in Figure S2a in the Supporting Information.

$$\langle \Psi' | \Psi \rangle = 0.896(2222200000220000) + 0.107(22 + 20 - 0002 + 000) − 0.102(222 + 0002 + 000)\ldots$$ (5)

Note that there are fifteen orbitals and twelve electrons in total. As shown in eq 5, in the major electronic configuration, all of the electrons occupy Cr–C σ and π orbitals that have strong binding character. As a result, the $^1A'$ ($^1A'$) state has the shortest Cr–C bond length (in the CASPT2 calculations) among the states investigated in this work.
The reference wave functions of the 3B_2, 5B_2, and 7A_2 states are as follows:

$$\Psi(3B_2) = 0.891i22 + 000220002 + 00) - 0.111i22 + 00020020 + 00)\ldots$$

$$\Psi(5B_2) = 0.907i22 + 000220002 + 00) - 0.148i22 + 00020020 + 00) - 0.102i22 + 002 + 02 + 00 + 00)\ldots$$

$$\Psi(7B_2) = -0.95i122 + 0002 + 00 + 0 + 0 + 0.139i22 + 002 + 000 + 00)\ldots$$

The order of MOs in the wave functions is shown in Figure S2b in the Supporting Information. The molecular structures of these three states (3B_2, 5B_2, and 7B_2) have different C−C−Cr bond angles, 88.9°, 100.2°, and 120.0°, respectively, indicating that the bond angle increases as the spin multiplicity increases. As shown in eq 7, the major electronic configuration of the 3B_2 state can be prepared from the major electronic configuration of the 1B_1 state by exciting one electron from the a_{1g} to a_{1u}. Since the a_{1u} orbital has a nodal plane-like structure between C−C−Cr bonds (that is, the phases of the MO’s are different), see Figure S2b in the Supporting Information), the occupation of the a_{1u} orbital leads to unfavorable interaction, thereby increasing the C−C−Cr bond angle in the 3B_2 state. In contrast, the major electronic configuration of the 1A_2 (2B_2) state can be prepared from the major electronic configuration of the 1B_2 state by exciting one electron from the b_{2g} orbital. In the b_{2g} orbital, there exists strong interaction (Cr−C π orbitals) between d orbital lying in the molecular plane and π orbital of CO (see Figure S2b in the Supporting Information). Therefore, the 1A_2 (3B_2) state, which has one less electron in the b_{2g} orbital of strong binding character, is likely to have a larger C−C−Cr bond angle (120°) than the 3B_2 state.

As can be seen in Table 2, the Cr−C bond length also increases as the spin multiplicity increases. In the major electronic configuration of the 3B_2 state, two electrons occupy the a_{1u} orbital, which is a Cr−C π-bonding orbital, resulting in shorter Cr−C distance than in other states. In addition, the minor electronic configurations of the 1B_2 and 3B_2 states support the bond elongation in the 3B_2 state as well. In all of the minor electronic configurations of the 1B_2 and 3B_2 states, the Cr−C π-antibonding orbitals are occupied, as can be seen in eqs 6 and 7. Since the contribution of minor electronic configurations is slightly larger in the 3B_2 state (3.2%) than in the 1B_2 state (2.6%), the Cr−C bond in the 3B_2 state is likely to be longer than in the 1B_2 state. For the 1A_2 (2B_2) state, as mentioned above, only one electron occupies the b_{2g} orbital unlike in other states (1B_2 and 3B_2) that have two electrons in the b_{2g} orbital. Moreover, the CI coefficient (−0.951) of the major electronic configuration of the 1A_2 (2B_2) state is larger than that of other states. This one-electron occupation of the b_{2g} orbital with strong binding character leads to further elongation of the Cr−C bond length in the 1A_2 (2B_2) state. Thus, the elongation of the Cr−C bond with the increase of spin multiplicity is well accounted for by the electronic structure of each state.

Ground State of Cr(CO)3. From CASPT2 calculations based on CAS(12,15), the ground state of Cr(CO)3 is determined to be the 1A_1 ($^1A'$) state, which lies lower in energy by 1.9 kcal/mol than the 3B_2 state. In addition, the refinement using quadruple-ζ basis sets for C and O also provides the 1A_1 ($^1A'$) as the ground state of Cr(CO)3 by 4.8 kcal/mol. This assignment is consistent with the experiment. In a previous study, the 3B_2 state calculated by CCSD method lies lower in energy by 13.0 kcal/mol than the 1A_1 ($^1A'$) state. All these results imply that the consideration of multiconfigurational character is crucial to obtain correct energy ordering of Cr(CO)3, and therefore, the use of multiconfigurational method is essential to address nearly degenerate electronic states of Cr(CO)3, as for Cr(CO)2.

C. Spin-Forbidden Reactions of Cr(CO)2 and Cr(CO)3.

The sequential dissociation (thermolysis) of CO ligands from Cr(CO)3 to Cr(CO)2 are spin-allowed reactions because the ground states of Cr(CO)3 (3B_1, 5B_2, and 7A_2) are all singlet states and the CO ($^3Σ^+$) ligand is singlet. In contrast, the dissociation reactions (1) from the ground state of Cr(CO)3 to the ground state of Cr(CO)2 (2) from the ground state of Cr(CO)2 to the ground state of Cr(CO) are all spin-forbidden reactions because the ground states of Cr(CO)3 (Cr(CO)2) and Cr(CO) are singlet, quintet, and septet, respectively. A similar spin-forbidden reaction, Fe(CO)4 + CO → Fe(CO)3, and their origin were previously studied, but the origin of the spin-forbidden reactions of Cr(CO)3 ($n=1−3$) has not been clearly explained so far.

The calculation results presented in this work provide insight to these processes. As mentioned in the previous sections, the energy differences between the ground and the first excited states of Cr(CO)3 and Cr(CO)2 are only 0.8 kcal/mol (MS-CASPT2/ANO-RCC-QZ//MS-CASPT2/ANO-RCC-QZ+TZ, 3Π_g and 1Π_u) and 4.8 kcal/mol (MS-CASPT2/ANO-RCC-QZ//MS-CASPT2/ANO-RCC-QZ+TZ, 3Π_u and 1Π_g), respectively. The first low-lying excited states of Cr(CO)2 and Cr(CO)3 are easily populated by thermal energy and then undergo spin-allowed reactions to the ground states of Cr(CO)2 and Cr(CO)3, respectively. In other words, the apparent spin-forbidden reaction of Cr(CO)3 ($n=1−3$) becomes a spin-allowed reaction because of the small energy gap between the ground and the first excited states. On the basis of this scenario, we propose the reaction mechanism of the apparent spin-forbidden dissociation of Cr(CO)3 into CrCO as follows: the ground state of Cr(CO)3 (quintet) → the first excited state of Cr(CO)3 (septet) → the ground state of Cr(CO) (septet) + CO, where the second step is actually spin-allowed dissociation.

Another possible origin of the spin-forbidden reaction is spin-orbit coupling (SOC); different spin multiplicity states can be mixed by SOC at a specific molecular structure, which is called intersystem crossing (ISC) point. This mechanism was used to account for the spin-forbidden reaction of Fe(CO)4, However, since SOC is rather weak for the Fe(CO)4, this mechanism is unlikely to be a minor reaction channel in the spin-forbidden dissociation of Cr(CO)3 into CrCO.

The metal complexes Cr(CO)3 and Cr(CO)2 presented in this work have uniquely small energy gap between the ground and the first excited states. In the case of Fe(CO)3, the energy gap is ~8 kcal/mol and cannot be easily overcome by thermal energy. Thus, this apparent spin-forbidden reaction of Cr(CO)3 ($n=1−3$) occurs by a spin-allowed reaction, which is driven by thermal population of the first low-lying excited state.
4. CONCLUSION

The multireference ab initio calculations were carried out to identify the ground and low-lying excited states of unsaturated chromium carbonyls, Cr(CO)$_2$ and Cr(CO)$_3$. The analysis of electronic structures clearly explains the structural differences among the electronic states of Cr(CO)$_2$ and Cr(CO)$_3$. The CASPT2 and MS-CASPT2 calculations show that the ground state of Cr(CO)$_3$ is the ^1Π_u state in the gas phase. The first low-lying excited state of Cr(CO)$_2$ is the ^3Π_u state that lies higher in energy by only 0.8 kcal/mol than the ^3Π_g state; therefore, both ^3Π_u and ^3Π_g states can coexist. From this result, we suggest that the unexpectedly high frequency of the C=O stretching mode observed in the transient absorption experiment in the gas phase can be ascribed to the vibrational frequency of ^3Π_u state, which can be easily populated due to the small energy gap from the ground state. Thus, the calculated results in this work clearly address the discrepancy between the calculation and experiment regarding the identity of the ground states. For Cr(CO)$_2$, CASPT2 calculations show that the ground state is the ^1A_g state of C$_{4v}$ structure, which is consistent with the experimental finding. The first low-lying excited states of Cr(CO)$_2$ and Cr(CO)$_3$ are the ^7Π_u and ^5Σ_g states, respectively, which have the same spin multiplicities as the ground states of their corresponding ligand dissociation products, CrCO (^1A') and Cr(CO)$_2$ (^7Π_u), respectively. In addition, the energy differences between the ground state and the first low-lying excited states are only 0.8 and 4.8 kcal/mol for Cr(CO)$_2$ and Cr(CO)$_3$, respectively. These small energy differences are likely to facilitate the apparent spin-forbidden reaction of the ground states of Cr(CO)$_2$ and Cr(CO)$_3$ via the low-lying excited states of Cr(CO)$_2$ and Cr(CO)$_3$ generated by thermal excitation.

■ ASSOCIATED CONTENT

3 Supporting Information

Full details of calculations of EA of CO (Table S1), the computational details of the DFT and MP2 (single-reference calculations) the optimized geometrical parameters, \(S^2 \) values, the relative energies of all the states of Cr(CO)$_2$ and Cr(CO)$_3$, calculated using DFT and MP2 (Tables S2 and S3, respectively), the comparison of the molecular structure and energetics obtained by DFT, MP2, and CASSCF, the detailed discussion of CO stretching frequency of the ^3Π_g state, and the active orbitals of Cr(CO)$_2$ and Cr(CO)$_3$ (Figures S1 and S2, respectively). This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: joonghankim@kaist.ac.kr (J.K.); hyotcherl.ihee@kaist.ac.kr (H.I.).

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the Catholic University of Korea, Research Fund, 2012. This work was supported by the Research Center Program (CA1201) of IBS (Institute for Basic Science) in Korea.

■ REFERENCES

