Several crystals of different product batches showed, by circular dichroism (CD) spectroscopy, the apparently random distribution of P- and M-helices.

Crystallographic data (including structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-153290, CCDC-153291, and CCDC-153292. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: +44(1223)336-033; e-mail: deposit@ccdc.cam.ac.uk).

Ultrafast Electron Diffraction of Transient [Fe(CO)₄]: Determination of Molecular Structure and Reaction Pathway**

Hyotcherl Ihee, Jianming Cao, and Ahmed H. Zewail*

Transition metal carbonyl complexes[1; 2] respond to ultraviolet light by the loss of one or more CO ligands and subsequent formation of coordinatively unsaturated carbonyl complexes, which are known to catalyze a variety of reactions.[3–5] The photochemistry governing the formation of these coordinatively unsaturated species has been an active area of research both experimentally[6–10] and theoretically.[11–19] often focusing on the reaction pathways and molecular structures of these transient species. Among transition metal carbonyl complexes, [Fe(CO)₄] is one of the most extensively studied molecular systems. [Fe(CO)₄] absorbs strongly in the ultraviolet starting at about 350 nm (3.5 eV).[10–22] The spectrum is rather featureless, and is dominated by metal-to-ligand charge transfer transitions[11–15] at high energies. Having five carbonyl ligands, an [Fe(CO)₄] molecule can dissociate into five different products ([Fe(CO)₃]x, x = 3, 4, 2, 1, 0) depending on the excitation wavelength.

In these reactions, [Fe(CO)₄] is the primary intermediate and serves as a “doorway” molecule for various subsequent reactions,[23–24] such as decomposition, recombination with the carbonyl ligand, and coordination with solvent molecules. Elucidating the nature of [Fe(CO)₄], including its electronic states and the corresponding molecular geometry, is important for understanding the role of intermediates in the photolysis of transition metal carbonyl complexes.

Herein we report the direct determination of the molecular structure (Figure 1) of [Fe(CO)₄] using diffraction with ultrashort pulses of electrons. In this way, we are able to identify the primary reaction pathway and provide evidence...
bond lengths and angles of the intermediate structure. Because of the picosecond time resolution invoked in these ultrafast electron diffraction (UED) experiments, it is possible to “freeze” the intermediate and determine its structure and pathway. For [Fe(CO)₄], we provide direct evidence that the molecular structure involved is that of the singlet, not triplet, pathway contrary to many suggestions in past studies.

The potential energy levels of the [Fe(CO)₅] species relevant to the photolysis of [Fe(CO)₅] are shown in Figure 2. The ground state of [Fe(CO)₅] is a singlet (1A₁; D₃h) and can be pumped into excited singlet states by absorbing ultraviolet photons. Two possible reaction pathways, the singlet and the triplet, following UV excitation have been postulated[8, 9, 13, 16, 25] in the singlet pathway,[8, 13, 25] the 1E' state molecules of [Fe(CO)₅] dissociate into the singlet excited state (1A₁) of [Fe(CO)₄], while for the triplet pathway[8, 9, 16] intersystem crossing to the 3E' state of [Fe(CO)₅] is required prior to dissociation to the triplet ground state (3B₂) of [Fe(CO)₄]. For photolysis in solid matrices at low temperature, the produced [Fe(CO)₄] was characterized[26] to have a structure with C₂ᵥ symmetry and to be in the triplet electronic ground state. This observation is consistent with other experimental results in which secondary fragments ([Fe(CO)₃], [Fe(CO)₂], and [Fe(CO)] in their triplet electronic ground states were observed as major products, indicating that the ground state (3B₂) of [Fe(CO)₄] played a determining role.[9, 10, 27]

However, it was still unclear whether [Fe(CO)₄] is formed directly into the triplet state or through relaxation via singlet states (Figure 2), and how the reaction proceeds to generate the subsequent secondary fragments. Early studies on the nanosecond time scale have suggested that the fragmentation follows the triplet pathway.[9, 10] A more recent study has suggested that the 1A₁ state is initially formed via a very short-lived higher state of [Fe(CO)₅], favoring the singlet pathway.[13] The discrepancy may originate from the difficulty associated with directly monitoring the identity of transient intermediate structure during the course of the reaction. In this respect, UED[28–32] is a powerful method for studying the molecular structure of transient [Fe(CO)₄]. As with conventional ultrafast spectroscopies,[33, 34] UED utilizes a femtosecond (fs) laser pulse to initiate a desired chemical reaction; however in UED, the subsequent laser pulses normally used to probe the progress of the reaction are replaced with ultrashort pulses of electrons. Diffraction patterns are then recorded to provide the internuclear distances of the molecular species involved.

The UED experiments on [Fe(CO)₅] were performed by using the second-generation apparatus[29] developed in this laboratory. The time zero, when the excitation laser pulse and the probing electron pulse temporally overlap in the molecular beam, was determined by an ion-induced lensing experiment[29] with ± 2 ps accuracy. To initiate the reaction, a fs laser pulse was focused into the gas sample beneath the needle of the free-jet expansion. The snapshots of diffraction images at a certain delay time t (−180 and +200 ps) were recorded and converted to the diffraction intensity data Iₚ(t; s), where s = (4π/λ)sin(θ/2), λ is the de Broglie wavelength of the electrons, and θ is the scattering angle.
In our experiments, the time zero was determined with 2 ps accuracy and the overall temporal resolution was less than 20 ps. Thus the diffraction data obtained when probe electron pulses arrived 180 ps ahead of excitation laser pulses (I_{tot} (−180 ps; s)) provided a reference signal originated only from the parent molecules [Fe(CO)$_5$], as these parent molecules were not excited by the initiating laser. In contrast, the data at +200 ps, I_{tot} (+200 ps; s), comprises the contributions from both the remaining parent molecules, [Fe(CO)$_4$], and newly formed photoproducts, [Fe(CO)$_3$]. Thus, the difference between them [Eq. (1)] selects the reaction change induced by the fs laser pulse.

$$\Delta I_{\text{tot}}(+200\text{ ps}; -180\text{ ps}; s) = I_{\text{tot}}(+200\text{ ps}; s) - I_{\text{tot}}(-180\text{ ps}; s). \quad (1)$$

In the diffraction difference signal, ΔI_{tot}, the contributions from unreacted molecules and the background signal, which do not change in the course of the chemical reaction, are eliminated, thus highlighting the signal from the change in molecular structure under consideration.[35] For data analysis, the difference modified molecular scattering intensity, $\Delta M_f(t; r_{\text{tot}}; s)$, was obtained following the conventional definition given in Equation (2),[36] where I_{atom} is the atomic scattering intensity ($t = +200$ ps and $r_{\text{tot}} = -180$ ps in the present case).

$$\Delta M_f(t; r_{\text{tot}}; s) = s\Delta I(t; r_{\text{tot}}; s)/(I_{\text{atom}}). \quad (2)$$

The corresponding difference radial distribution curves, $\Delta f(r)$, which directly give the change in internuclear distances (r) of the reaction, were then calculated from the $\Delta M(r)$ curves according to the standard gas-phase electron diffraction equation (3),[36] where the constant $k = 0.02$ A$^{-1}$, is a damping coefficient included to account for the limited s range.

$$\Delta f(r) = \frac{\Delta M(r)\sin(\pi r\hat{s})}{\pi r\hat{s}} \exp(-kr^2)\text{d}s \quad (3)$$

With two-photon excitation at the wavelength of 620 nm, only [Fe(CO)$_5$] (both 1A$_1$ and 3B$_2$ states) and [Fe(CO)$_4$] (the 1A$_1$ state only)[37] are energetically possible. A fit with these three possible products was performed by floating the fraction (relative to 100% parent fraction before the photolysis) of each species, and by using the structural parameters obtained from ab initio calculations.[19] The fraction of the singlet [Fe(CO)$_4$] was 14 ± 1%, while the total fraction of the triplet [Fe(CO)$_4$] and triplet [Fe(CO)$_5$] was less than 1%, indicating that the singlet [Fe(CO)$_4$] is the primary product and the formation of other species is negligible. To trace other possible secondary photofragments, a fit including triplet [Fe(CO)$_4$], triplet [Fe(CO)$_3$], and Fe was also performed by floating the fraction of each species, while keeping their structural parameters fixed at the values obtained from ab initio calculations.[19] The resulting total fraction of [Fe(CO)$_5$], [Fe(CO)$_4$], and Fe was less than 1%, confirming that these secondary products are negligible.

Figure 3 shows the comparison between the UED data fits with [Fe(CO)$_5$] for the two different reaction pathways. The [Fe(CO)$_4$] structure in the 1A$_1$ state is very similar to that of [Fe(CO)$_5$] with one equatorial carbonyl group removed, while the structure of [Fe(CO)$_3$] in the 3B$_2$ state is significantly distorted.[19] The C-Fe-C angles of the 3B$_2$ state are smaller and the Fe–C distances are longer than those of [Fe(CO)$_4$]. As shown in Figure 3, the fit for the 3B$_2$ state is clearly inferior to that of the 1A$_1$ state, which gives a very good agreement between the experiment and theory. Therefore, [Fe(CO)$_4$] is formed following the singlet pathway of the reaction in its singlet excited state, 1A$_1$, rather than the ground state, 3B$_2$, at the excitation used.[36] The 1A$_1$ state [Fe(CO)$_4$] may eventually convert into the 3B$_2$ state through intersystem crossing (thereby providing a more efficient route for the formation of the 3A$_2$ state [Fe(CO)$_3$]), but intersystem crossing needs more than 200 ns,[11,25] which is beyond our investigated time range of up to 200 ps.

A closer examination of the $\Delta f(+200\text{ ps}; -180\text{ ps}; r)$ curve (Figure 3) reveals rich details of the structural changes due to the depletion of [Fe(CO)$_4$] and formation of [Fe(CO)$_3$]. The two main peaks centered at about 2 Å and about 3 Å, respectively, indicate the depletion of the Fe–C and Fe⋯O internuclear contributions due to the liberation of CO. The shoulders beyond 3.5 Å are due to the reduction of other internuclear contributions, C⋯O and O⋯O, in the liberation process. The small peak for the C–O bond at about 1.12 Å is negative because the liberated CO ligand has a shorter bond length than that of the bound ligand (~1.15 Å), but the negative amplitude of the peak is small because the change (from 1.15 Å to 1.12 Å) is minute, causing the positive and negative contributions to nearly cancel out.

The structure of [Fe(CO)$_3$] obtained from our UED experiment was further refined by limiting the fit to a single product and floating all the independent structural parameters. The results are shown in Figure 4 and give the following structural parameters: r(Fe–C1) = 1.81 ± 0.03 Å, r(Cl–O1) = 1.14 ± 0.05 Å, r(Fe–C2) = 1.77 ± 0.03 Å; r(C2–O2) = 1.15 ± 0.02 Å.
0.06 Å, δ Cl-Fe-Cl = 169 ± 2°, δ C2-Fe-C2 = 125 ± 3°. The error bars represent one standard deviation and do not account for systematic errors. The structure determined here is in good agreement with that determined by ab initio calculation[19] for the 1A\textsubscript{1} state. Much earlier, Poliakoff and Turner in their studies of [Fe(CO)\textsubscript{4}] found a species other than the triplet ground state and tentatively assigned the species to be in the singlet state stabilized by a CH\textsubscript{4} matrix at low temperatures. Their careful analysis of IR intensities led them to obtain 173.5 ± 1° and 125 ± 2.5° for C-Fe-C angles which are remarkably close to our experimental UED values obtained for the isolated species.

In summary, the UED technique was used to study the elimination of CO ligands from [Fe(CO)\textsubscript{4}]. The molecular structure of the transient species was identified by using the temporal diffraction-difference approach of UED. Our results clearly showed that the major product, up to 200 ps, is the transient [Fe(CO)\textsubscript{4}]+ formed in the 1A\textsubscript{1} state, rather than the ground 3B\textsubscript{2} state. The structure obtained from the diffraction data was further refined to give the bond lengths and angles of the transient [Fe(CO)\textsubscript{4}]+ with a resolution of about 0.05 Å. This combined temporal and structural resolution should be of significant value in identifying transition configurations and pathways of other reactions.

Experimental Section

The second-generation UED apparatus[20] is composed of a femtosecond laser, a picosecond electron gun, a free-jet expansion sample source, and a two-dimensional single-electron detection system. Femtosecond laser pulses from a colliding-pulse mode-locked ring dye laser were amplified to 18.8 keV (de Broglie wavelength is 0.088 Å) and focused into the scattering volume. The electron gun to generate the ps electron pulses. Femtosecond laser (pump) was directed and focused into the gas sample beneath the needle of the electron gun to generate the ps electron pulses. Femtosecond laser (pump) was first frequency-doubled with a potassium dihydrogen phosphate (probe) was then split into pump and probe laser pulses; 95 % of each laser pulse delays between the fs pump laser pulse and the ps electron pulse were controlled by a computer-driven translational stage. The diffraction images were taken with ultrashort electron pulses (~2 × 109 electrons per pulse, with temporal width of 15 ps), and the total temporal resolution is less than 20 ps. The beam waist of both the electron beam and laser beam was adjusted to be about 300 μm, and the camera length was measured to be 102.9 mm. This second-generation apparatus is now replaced with a third-generation machine which provides orders of magnitude improvement in time resolution and sensitivity.[20]

[Fe(CO)\textsubscript{4}] was purchased from Aldrich (98 % purity). The sample was first purified through vacuum distillation and then transferred into a sample cell in situ. Following connection to the diffraction chamber, the sample was degassed by three cycles of freeze-pump-thaw. To provide enough molecular gas density in the scattering volume, the sample cell, gas line, and nozzle were heated to 47, 64, and 72 °C, respectively. The gas pressure in the scattering chamber during the experiment was about 4.6 × 10-4 Torr, and the pressure at the scattering volume was estimated to be about a few Torr.

Received: December 29, 2000 [Z16350]

I. Hargittai, M. Hargittai, A smooth residual background with extremely small amplitude, a likely result of the interaction of probe electrons with positive ions in the gas sample generated by the intense laser pulses, was observed in our experimental Δm. The background was removed by fitting a smooth curve through the zero-crossing points of the theoretical Δm. The experimental Δm curve was smoothed by Fourier filtering (9 A low-pass) and pixel regions showing systematic abnormalities were removed.[29, 30]

[36] The singlet [Fe(CO)$_4$] may, in principle, be generated through the present experiment, 620 nm photon excitation was used instead of 310 nm and the main absorption is two-photon. This excitation provides enough energy to break at most two Fe–C bonds, leaving [Fe(CO)$_3$] and [Fe(CO)$_4$] as major products.

[37] In our previous attempt[29] to isolate the [Fe(CO)$_4$] species, 310 nm fs laser pulses were used to photolyze [Fe(CO)$_5$]. Although one photon of 310 nm just falls short of the threshold for generating [Fe(CO)$_4$], [Fe(CO)$_4$] and Fe, it was found that in fact two-photon absorption dominated. Consequently, the major products obtained were actually [Fe(CO)$_5$], [Fe(CO)$_4$], and Fe rather than [Fe(CO)$_4$] or [Fe(CO)$_3$]. In the present experiment, 620 nm photon excitation was used instead of 310 nm and the main absorption is two-photon. This excitation provides enough energy to break at most two Fe–C bonds, leaving [Fe(CO)$_3$] and [Fe(CO)$_4$] as major products.

COMMUNICATIONS

Dual-Signaling Fluorescent Chemosensors Based on Conformational Restriction and Induced Charge Transfer**

Jesse V. Mello and Nathaniel S. Finney*

Fluorescent chemosensors provide a powerful optical method for spying on molecular recognition events. As a result, they have found practical application in cellular imaging, environmental monitoring, and biological assays.[1] Chemosensors that allow the measurement of two different emissions bands have the important feature that they permit signal ratioing, which can increase the dynamic range and provide built-in correction for environmental effects.[2] In addition, dual-channel fluorophores allow a change in perceived color as well as simple brightening, facilitating rapid visual assays.

A common feature of dual-channel fluorescent chemosensors is that substrate binding leads to enhancement of one emission channel at the expense of the other. We describe herein an exception to this generalization, in which the combination of two signaling mechanisms—conformational restriction and induction of charge transfer—allows metal binding to turn two fluorescence emission bands on independently.[3]

Biarylpyridines 1–4 (Scheme 1) were chosen for the present study because of their synthetic accessibility and modest fluorescence emission from the locally excited (LE) state.[4]

The unanticipated emission from an induced charge transfer (CT) state further extends the versatility of these fluorophores.[5] The emission of 1 (1 \times 10$^{-5}$ M in CH$_3$CN) is illustrative: the neutral fluorophore exhibits strong LE emission at about 345 nm; on protonation of the pyridine nitrogen atom with trifluoroacetic acid, the LE emission is completely replaced by readily visible CT emission at about 450 nm (Figure 1).

Appending 1 with polyether metal binding domains leads to dual-channel fluorescent chemosensors that are remarkably responsive and selective given their structural simplicity. The titration of 2 (1 \times 10$^{-5}$ M in CH$_3$CN) with alkali metal and alkaline earth cations is representative (Figure 2). The addition of excess Li$^+$ leads to strong (5.5-fold at λ_{max}) enhancement of the emission from the LE state, and concomitant increase in quantum yield as a result of binding-induced conformational restriction.[6] In contrast, the addition of Mg$^{2+}$ leads to a slight diminution of LE emission, but an enhancement of CT emission. Notably, the addition of Ca$^{2+}$ leads to simultaneous enhancement of both emission bands (Figure 2). The K_a values for the association of 2 with Li$^+$, Mg$^{2+}$, and Ca$^{2+}$ are 6.7 \times 104 M$^{-1}$, 8.3 \times 104 M$^{-1}$, and 6.7 \times 105 M$^{-1}$ respectively.[7, 8]

The seemingly minor structural change from 2 to 3 leads to a significantly altered metal-binding profile. While 3 still responds to Li$^+$, it does so only weakly compared to 2 (Γ/$_I$ at Γ = Γ for 2, 3, and 4).

![Scheme 1. Synthesis of biarylpyridines 1–4. Compound 4 was synthesized analogously to 2 by using the 4-vinyl-substituted pyridine derivative. dba = trans,trans-dibenzylidenediacetone.](image)