In-situ TEM Observation of Heterogeneous Phase Transition of a Constrained Single-crystalline Ag₂Te Nanowire

Juneho In,[†] Youngdong Yoo,[†] Jin-Gyu Kim,[‡] Kwanyong Seo,[†] Hyunju Kim,[†] Hyotchel Ihee,[†]

Sang Ho Oh, $\ddagger, \$, *$ and Bongsoo Kim †,*

Department of Chemistry, KAIST, Daejeon 305-701, Korea Division of Electron Microscopic Research, KBSI, Daejeon, 305-333, Korea, Department of Material Science and Engineering, POSTECH, Pohang 790-784, Korea

* To whom correspondence should be addressed. Fax: +82-42-350-2810 E-mail: bongsoo@kaist.ac.kr and shoh@postech.ac.kr

[†]KAIST

[‡] KBSI

§ POSTECH

Scheme S1: Experimental setup for Ag_2Te NW synthesis. Sapphire substrates were placed about 12 cm from the precursor ($D_1 \sim 1.5$ cm, $D_2 \sim 12$ cm).

Figure S1. (a,b) XRD patterns of epitaxially grown and freestanding Ag_2Te NWs, respectively, with a monoclinic crystal structure (JCPDS card no. 81-1985).

Figure S2. In-situ SAED pattern obtained during heating at temperatures of 170 $^{\circ}$ C as shown in Figure 2c. The split (310)_M spot is magnified separately in this pattern. [M: monoclinic, white circle: monoclinic spot, yellow square: FCC spot]

Figure S3. In-situ SAED patterns of a freestanding Ag_2Te NW obtained during cooling at (a) 180~130 °C and (b) 120 °C.

Figure S4. (a,b) The corresponding FFT patterns of a sapphire substrate and the Ag_2Te NW, respectively, in Figure 3b.

Figure S5. Low-resolution TEM image of the cross-sectional lamella enclosed with a sapphire substrate and Pt layers. Yellow arrows indicate the cross-sections of Ag_2Te NWs. [Cross-section thickness: ~100 nm, Pt_a: Electron beam assisted deposition, Pt_b: ion beam assisted deposition]

Figure S6. (a,b) In-situ HRTEM image and the corresponding FFT pattern obtained after cooling down to RT. It exhibits the coexistence of FCC and monoclinic phases. [M: monoclinic, white circle: monoclinic spot, yellow square: FCC spot]

Figure S7. In-situ HRTEM image of the interface between the NW and sapphire substrate showing ongoing phase transition at 200 $^{\circ}$ C. It displays the formation and the propagation of the BCC phase within the FCC matrix.