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I. Supplementary Discussions 

A. Mathematical background for the decomposition of SADSk into SADSk, ∥ and 

SADSk, ⟂ 

An arbitrary vector x as well as SADSk, ∥ can be mathematically decomposed into two 

components, a component x∥ that is on the plane spanned by two vectors, (∂S/∂T)ρ and (∂S/∂ρ)T, 

and the other component x⟂ that is in the direction perpendicular to this plane. Because SADSk, 

∥ is on the plane spanned by (∂S/∂T)ρ and (∂S/∂ρ)T, SADSk, ∥ can be expressed as a linear 

combination of (∂S/∂T)ρ and (∂S/∂ρ)T. The coefficients of the linear combination for SADSk, ∥, 

dk, T and dk, ρ, can be calculated through the following arithmetic process without fitting. First, 

(∂S/∂T)ρ can be decomposed into two components, one parallel to (∂S/∂ρ)T and the other 

perpendicular to (∂S/∂ρ)T. Let’s denote the former and latter components as (∂S/∂T)ρ, ∥ and 

(∂S/∂T)ρ, ⟂, respectively. Then, the two components can be expressed as follows: 

(∂S/∂T)ρ, ∥ = [(∂S/∂T)ρ∙ (∂S/∂ρ)T/|(∂S/∂ρ)T|] × (∂S/∂ρ)T/|(∂S/∂ρ)T|, (S1) 

(∂S/∂T)ρ, ⊥ = (∂S/∂T)ρ − (∂S/∂T)ρ, ∥, (S2) 

where · denotes the inner product of the vectors, |A| denotes the norm of the vector A and × 

denotes a scalar multiplication. In the same way, (∂S/∂ρ)T can be decomposed into two 

components as follows: 

(∂S/∂ρ)T, ∥ = [(∂S/∂ρ)T∙ (∂S/∂T)ρ/|(∂S/∂T)ρ|] × (∂S/∂T)ρ/|(∂S/∂T)ρ|, (S3) 

(∂S/∂ρ)T, ⊥ = (∂S/∂ρ)T − (∂S/∂ρ)T, ∥. (S4) 

Substituting the above expressions into Eq. (15) in the main text, we get: 

SADS𝑘(𝑞) = dk, T × (∂S/∂T)ρ + dk, ρ × (∂S/∂ρ)T + SADS𝑘, ⊥(𝑞) 

= dk, T × [(∂S/∂T)ρ, ∥ + (∂S/∂T)ρ, ⊥] + dk, ρ × (∂S/∂ρ)T

+ SADS𝑘, ⊥(𝑞) 

= dk, T × (∂S/∂T)ρ, ⊥ + [dk, T × ((∂S/∂T)ρ∙ (∂S/∂ρ)T/|(∂S/∂ρ)T|2

+ dk, ρ)] × (∂S/∂ρ)T + SADS𝑘, ⊥(𝑞) 

= dk, T × (∂S/∂T)ρ + dk, ρ × [(∂S/∂ρ)T, ∥ + (∂S/∂ρ)T, ⊥]

+ SADS𝑘, ⊥(𝑞)  

= [dk, T + dk, ρ × (∂S/∂ρ)T∙ (∂S/∂T)ρ/|(∂S/∂T)ρ|2] × (∂S/∂T)ρ

+ dk, ρ × (∂S/∂ρ)T, ⊥ + SADS𝑘, ⊥(𝑞) 

(S5) 



S3 

 

Since (∂S/∂T)ρ, ⟂ ⟂ (∂S/∂ρ)T and (∂S/∂T)ρ, ⟂ ⟂ SADSk, ⊥(q),  

SADS𝑘(𝑞) ∙ (∂S/∂T)ρ, ⊥ = {dk, T × (∂S/∂T)ρ, ⊥ + [dk, T × ((∂S/∂T)ρ  

× ∙ (∂S/∂ρ)T/|(∂S/∂ρ)T|2 + dk, ρ)] × (∂S/∂ρ)T 

× +SADS𝑘, ⊥(𝑞)} ∙ (∂S/∂T)ρ, ⊥ 

= dk, T × (∂S/∂T)ρ, ⊥ ∙ (∂S/∂T)ρ, ⊥ 

= dk, T × |(∂S/∂T)ρ, ⊥|2 

(S6) 

Accordingly, dk, T can be simply calculated as follows: 

dk, T = SADS𝑘(𝑞) ∙ (∂S/∂T)ρ, ⊥/|(∂S/∂T)ρ, ⊥|2. (S7) 

In the same way, dk, ρ can be calculated as follows:  

dk, ρ = SADS𝑘(𝑞) ∙ (∂S/∂ρ)T, ⊥/|(∂S/∂ρ)T, ⊥|2. (S8) 

 

B. Horizontal stripes in the contour plot of the PEPC-treated data 

Upon careful inspection, it may be noticed that there are some horizontal (the direction 

parallel to the t axis) stripes in the PEPC-treated curves shown in Figs. 2, 3, and 4. We 

investigated the origin of the horizontal stripes and determined that the artifact was not created 

by the PEPC process and was already present in the original data, except for the case of Fig. 

3(a). 

For instance, in the data shown in Fig. 2(b), the horizontal stripes are clearly visible in the 

contour plot of ΔS(q, t)PEPC, whereas not in the corresponding plot of ΔS(q, t)exp. However, we 

noticed that the horizontal stripes observed in the contour plot of ΔS(q, t)PEPC are not created 

by the PEPC process, but rather originally existed in the data, ΔS(q, t)exp. This artifact was not 

created, but just became visible in the contour plot because the overall amplitude of the data 

was reduced through the PEPC process. To demonstrate this, we first smoothed ΔS(q, t)PEPC 

and ΔS(q, t)exp to generate smoothed curves which have a smooth profile in q-space and thus 

are free from sharp features due to experimental noise and artifacts such as horizontal stripes 

(Fig. S2, left panel, black). Specifically, for the smoothing, we applied a Savitzky–Golay filter 

with a polynomial order of 1 and a window of 25 data points. Afterwards, we extracted the 

sharp artifact features in ΔS(q, t)PEPC and ΔS(q, t)exp by subtracting the smoothed curves from 

ΔS(q, t)PEPC and ΔS(q, t)exp. To show that the artifact was not generated or strengthened by the 

PEPC procedure, we compared the resulting artifact features, ΔS(q, t)PEPC, art and ΔS(q, t)exp, art 
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(Fig. S2, right panel, blue and red). The comparisons of ΔS(q, t)PEPC, art and ΔS(q, t)exp, art 

directly show whether the artifact, including the horizontal stripes, was generated or 

strengthened by the PEPC procedure or already existed in the original data. According to the 

comparisons, as Fig. S2 shows, the amplitude of ΔS(q, t)PEPC, art and ΔS(q, t)exp, art are almost 

identical, indicating that the artifact, including the horizontal stripes, was not generated or 

strengthened via the PEPC procedure. 

Regarding the data shown in Fig. 3(a), the horizontal stripes were significantly enhanced 

by the PEPC procedure. To show this point, we extract artifact features in ΔS(q, t)synch and ΔS(q, 

t)synch, PEPC using the same method as in the previous example (Fig. S3). Each of ΔS(q, t)synch 

and ΔS(q, t)synch, PEPC was smoothed in q-space to generate smooth curves without sharp features 

arising from experimental artifacts (Fig. S3, left panel, black). The sharp artifact features were 

then extracted by subtracting the smoothed curves from ΔS(q, t)synch or ΔS(q, t)synch, PEPC. A 

comparison of the extracted artifact features (Fig. S3, right panel, ΔS(q, t)synch, art (blue) and 

ΔS(q, t)synch, PEPC, art (red)) reveals a significant difference in amplitude between the two features, 

with ΔS(q, t)synch, PEPC, art showing a much larger amplitude than ΔS(q, t)synch, art. The comparison 

indicates that the sharp artifact features were strengthened by the PEPC treatment. In particular, 

the difference in amplitude of the artifact features is more pronounced at earlier time delays, 

specifically at 300 ps and 10 ns, compared to the later time delay of 300 ns. 

However, the increase in the amplitude of the artifact features is not inherent to the PEPC 

method itself. Rather, it is a result of the poor signal-to-noise ratio (S/N ratio) of the signal 

components used in PEPC, particularly ΔS(q, t = 100 ps)exp. To support this claim, we also 

examined the PEPC treated data using signal components modified to have high S/N ratios. By 

demonstrating this, we aimed to show that if signal components with high S/N ratios are used 

in PEPC, the amplitude of the artifact does not change significantly before and after the PEPC 

treatment, as exemplified in Fig. S2. 

We first generated noise-free signal components by applying a Savitzky–Golay filter with 

a polynomial order of 1 and a window of 25 data points to the original (∂S/∂T)ρ and ΔS(q, t = 

100 ps)exp. The PEPC method was then applied using these noise-free signal components, 

resulting in curves denoted as ΔS(q, t)synch, PEPC, sm (Fig. S4, left panel, red). Artifact features 

were subsequently extracted from both the original ΔS(q, t)synch and the newly produced ΔS(q, 

t)synch, PEPC, sm. The resulting artifact features are denoted as ΔS(q, t)synch, art and ΔS(q, t)synch, PEPC, 
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sm, art, respectively (Fig. S4, right panel, blue and red). A comparison of the artifact features 

reveals that the amplitude of the artifact features in the PEPC-treated signal, obtained with 

smoothed signal components, is comparable to that in the original data, ΔS(q, t)synch. 

Our analysis indicates that the horizontal-stripes artifact observed in ΔS(q, t)synch, PEPC is not 

a result of any systematic artifact introduced by the PEPC method. Rather, it originates either 

from the original raw data or from the noise present in the signal components (∂S/∂T)ρ or ΔS(q, 

t = 100 ps)exp used in the PEPC method. Our findings demonstrate that the PEPC method does 

not generate specific artifacts, such as horizontal stripes, as long as the signal components from 

which the kinetic contributions are to be removed have a sufficiently high S/N ratio. Thus, any 

enhanced artifacts observed on the PEPC-treated curves can be attributed to the inherent noise 

in the signal component used for PEPC. As mentioned in the main text, the PEPC procedure 

does not involve any fitting process or chi-square (χ2) estimation; instead, it utilizes vector 

calculations to determine the amplitude of the signal components to be subtracted. This method 

eliminates the possibility of errors associated with fitting procedures. Therefore, any enhanced 

artifacts observed on the PEPC-treated curves are solely due to inherent noise present in the 

signal components used in the PEPC method, as we have demonstrated above. 

 

C. Determination of coefficients gk and hk during structural analysis 

For a given structural candidate for the reaction intermediate, the theoretical SADS, SADSk, 

theory can be calculated by using the following equation:  

SADS𝑘, theory(𝑞) = ΔS𝑘(q)solute, theory + ΔS𝑘(q)cage, theory. (S9) 

Then, SADSk(q)corr which minimizes the discrepancy between SADSk(q)corr and SADSk, theory(q) 

is generated. The relation between SADSk(q)corr and SADSk, theory(q) can be expressed as 

follows:  

SADS𝑘, theory(𝑞) = SADS𝑘(𝑞)𝑐𝑜𝑟𝑟 + X(𝑞) 

= SADS𝑘(𝑞)PEPC + 𝑔𝑘 × (∂S/∂T)ρ + ℎ𝑘 × (∂S/∂ρ)T + X(𝑞) 
(S10) 

where X(q) is the discrepancy between SADSk(q)corr and SADSk, theory(q). Optimal gk and hk are 

those minimize the norm of X(q), i.e., |X(q)|. While the detailed proof will not be described in 

here, such optimal gk and hk can be calculated in a similar manner to the calculation of dk, T and 

dk, ρ explained in section “Mathematical background for the decomposition of SADSk into 

SADSk, ∥ and SADSk, ⟂” as follows:  
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𝑔𝑘 = (SADS𝑘, theory(𝑞) − SADS𝑘(𝑞)PEPC) ∙ (∂S/∂T)ρ, ⊥/|(∂S/∂T)ρ, ⊥|2, (S11) 

ℎ𝑘 = (SADS𝑘, theory(𝑞) − SADS𝑘(𝑞)PEPC) ∙ (∂S/∂ρ)T, ⊥/|(∂S/∂ρ)T, ⊥|2. (S12) 

We note that numerical methods also can be employed to obtain the optimal gk and hk 

without using vector operations that may seem complex at first glance.1-3 Using numerical 

approaches, the least-squares solution of the following system of linear equations can be 

determined:  

SADS𝑘, theory(𝑞) − SADS𝑘(𝑞)PEPC = 𝑔𝑘 × (∂S/∂T)ρ + ℎ𝑘 × (∂S/∂ρ)T. (S13) 

It is also worth noting that the optimal values of gk and hk, obtained via analytical or numerical 

means, are those which minimize the sum of the squares of the residuals, as expressed by the 

term “least-squares”. However, for the analysis of TRXL data, it is more common and reliable 

to minimize the weighted least square, such as χ2, which takes into account the experimental 

standard deviation. Thus, obtaining the optimal values of gk and hk that minimize χ2 is ideal. To 

achieve this, we modify Eqs. (S11–S13) as follows:  

𝑔𝑘 = (SADS𝑘, theory(𝑞)′ − SADS𝑘(𝑞)PEPC′) ∙ (∂S/∂T)ρ, ⊥′/|(∂S/∂T)ρ, ⊥′|2, (S14) 

ℎ𝑘 = (SADS𝑘, theory(𝑞)′ − SADS𝑘(𝑞)PEPC′) ∙ (∂S/∂ρ)T, ⊥′/|(∂S/∂ρ)T, ⊥′|2, (S15) 

SADS𝑘, theory(𝑞)′ − SADS𝑘(𝑞)PEPC′ = 𝑔𝑘 × (∂S/∂T)ρ′ + ℎ𝑘 × (∂S/∂ρ)T′. (S16) 

Here, the prime notation indicates that the vectors are scaled by the experimental standard 

deviation, denoted by σ(q), as shown in the following equation:  

A(𝑞)′ = A(𝑞)/𝜎(𝑞). (S17) 

This approach operates on the principle that by scaling Eq. (S10) with σ(q), one can obtain the 

optimal gk and hk values that minimizes |X(q)′|, whereas the original gk and hk values obtained 

via Eqs. (S11) and (S12) minimizes |X(q)|. The Eq. (S10) scaled with σ(q) is expressed as 

follows:  

SADS𝑘, theory(𝑞)′= SADS𝑘(𝑞)𝑐𝑜𝑟𝑟′ + X(𝑞)′ 

         = SADS𝑘(𝑞)PEPC′ + 𝑔𝑘 × (∂S/∂T)ρ′ + ℎ𝑘 × (∂S/∂ρ)T′ 

× +X(𝑞)′ 

(S18) 

Then, it can be noticed that by substituting original vectors SADSk, theory(q), SADSk(q)PEPC, 

(∂S/∂T)ρ, ⟂, and (∂S/∂ρ)T, ⟂ in Eqs. (S11) and (S12) with their scaled counterparts, SADSk, 

theory(q)′, SADSk(q)PEPC′, (∂S/∂T)ρ, ⟂′, and (∂S/∂ρ)T, ⟂′, one can obtain the optimal gk and hk 
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values that minimizes |X(q)′| using the same procedure as in the original least-squares 

optimization. The resulting equations are Eqs. (S14) and (S15). It is also possible to apply the 

same scaling to Eq. (S13) to enable the numerical method to find the minimum χ2 solutions 

instead of least-squares solutions as shown in Eq. (S16). 

Accordingly, the inclusion of the parameters gk and hk in the molecular structure 

optimization using PEPC-treated data does not increase the complexity of the fitting process, 

as they are not considered independent fitting parameters. Consequently, the structural analysis 

of a SADSk(q)PEPC has the same level of complexity as that of the original SADSk(q) that is not 

subjected to PEPC. Therefore, the PEPC method facilitates the kinetic analysis of ΔS(q, t)exp 

by removing the contribution of the known signal components, without compromising the 

subsequent structural analysis. 

 

D. Comparison of the PEPC method and the nodal-point method (NP method) 

In this study, we introduce the PEPC method, designed to remove the kinetic contributions 

of the signal components with known shapes in q-space from ΔS(q, t)exp. As an example, we 

demonstrate the removal of the kinetic contribution of ΔS(q, t)solvent, which represents the 

hydrodynamic response of bulk solvent, using the PEPC method. This removal leaves only the 

kinetics of ΔS(q, t)sol-rel in the resulting PEPC-treated signal ΔS(q, t)PEPC, making the analysis 

of solute kinetics more straightforward. 

It should be noted that a conventional method, called the “nodal-point method (NP 

method)”, can offer similar benefits to the PEPC method in some cases. In the NP method, the 

kinetics of ΔS(q, t)sol-rel can be determined by monitoring changes in signal intensities at 

selected q-points, called “nodal points”, where the signal intensity of ΔS(q, t)solvent is zero. Since 

the intensity of ΔS(q, t)solvent is zero at these points, the kinetics of ΔS(q, t)solvent do not 

contribute to the signal intensities at the nodal points. Thus, any rise and decay of signal 

intensities at the nodal points can be attributed to the kinetics of ΔS(q, t)sol-rel. 

This NP method may seem intuitive and straightforward, but it suffers from two significant 

limitations related to accuracy and applicability. For example, to use the NP method for 

removing the kinetic contributions of ΔS(q, t)solvent, nodal points for ΔS(q, t)solvent are required. 

However, ΔS(q, t)solvent is a linear combination of two different components, (∂S/∂T)ρ and 

(∂S/∂ρ)T, and the positions of nodal points for these two components differ in general. Thus, 



S8 

 

the position where the intensity of ΔS(q, t)solvent is zero varies depending on the relative ratio 

of (∂S/∂T)ρ and (∂S/∂ρ)T, as shown in Fig. S9(b). This example illustrates that the requirement 

for nodal points significantly restricts the applicability of the NP method, making it unable to 

eliminate the kinetic contributions of multiple trivial components. We stress that, in contrast, 

the PEPC method is widely applicable and not subject to such limitations, as demonstrated in 

sections II H and II I of the main text. 

In addition to the aforementioned limitations, the NP method also has limitations in terms 

of accuracy. Specifically, the NP method relies solely on signal intensities at the nodal points, 

thereby restricting its precision in extracting solute kinetics. In contrast, the PEPC method 

utilizes signals from all q-points, resulting in smaller errors associated with kinetic analysis, 

even in scenarios where the NP method is applicable. To demonstrate this point, we compared 

the kinetic analysis results obtained using the NP method, PEPC method, and global fitting 

analysis (GFA). We applied the NP method to ΔS(q, t)exp for [Au(CN)2
-]3 in water presented in 

Fig. 2(b). The solvent term typically consists of two signal components, (∂S/∂T)ρ and (∂S/∂ρ)T, 

as Eq. (8) shows. However, in this case, only (∂S/∂T)ρ was considered, as our previous work4 

has shown that (∂S/∂T)ρ and (∂S/∂ρ)T have similar shapes for water. Consequently, (∂S/∂T)ρ, 

(∂S/∂ρ)T and ΔS(q, t)solvent, which is a linear combination of the formal two components, share 

the same nodal points. As shown in Fig. S9(a), (∂S/∂T)ρ of water has 11 nodal points in the q-

range of 1.0 – 6.5 (q = 1.5, 2.1, 2.8, 3.7, 4.2, 4.4, 4.6, 4.7, 4.9, 5.6, and 5.9 Å-1). By applying 

the NP method, solute kinetics were extracted by analyzing the time profiles of ΔS(q, t)exp at 

these 11 nodal points. Specifically, the profiles of ΔS(q, t)exp at the nodal points were globally 

fitted as a convolution of an instrument response function (IRF) of ~480 fs FWHM with a sum 

of exponential rise and decay functions sharing common time constants. The kinetic analysis 

revealed three time constants (2.2 ± 0.5 ps, 185 ± 71 ps, and 100 ± 24 ns), as shown in Fig. S9. 

The obtained time constant values of 2.2 ps, 185 ps, and 100 ns displayed notable deviations 

from those determined using the PEPC method, which were 1.7 ps, 1.0 ns, and 114 ns, 

respectively. They also deviated from the constants obtained through the GFA method, which 

were 1.6 ps, 3.0 ns, and 100 ns, respectively. Additionally, the relative error of the time constant 

values obtained using the NP method (27%, 38%, and 24% for the obtained time constants of 

2.2 ps, 185 ps, and 100 ns, respectively) was substantially higher than the relative errors from 

PEPC (6%, 10%, and 2.6%) or GFA (6%, 17%, and 20%). This large error from the NP method 
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is expected as it relies solely on information obtained from the limited number of nodal points 

(11 nodal points out of a total of 1,100 q-points for the data shown in the example). Due to the 

limited information, the accuracy of the analysis is relatively low. Due to the inherent 

inaccuracies, the NP method is typically unsuitable for rigorous kinetic analysis of 

experimental data and has mainly been used for on-the-fly monitoring of kinetics observed in 

the data being collected during experiments. Taken together with the limited applicability of 

the NP method, the comparison demonstrates that the PEPC method represents a significant 

advancement in the analysis of the signals obtained from TRXL experiments. 
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II. Supplementary Figures 

 

FIG. S1. Singular value decomposition (SVD) analysis of ΔS(q, t)PEPC shown in Fig. 2(b). (a) First five right singular vectors 

(RSVs) weighted by their corresponding singular values. (b) First five left singular vectors (LSVs). (c) Singular values, and 

the autocorrelation values for RSVs and LSVs from (a) and (b), respectively. The singular values and autocorrelation values, 

together with the shape of the RSVs, suggest that up to three significant components contribute to the signal. The significant 

LSVs and RSVs, along with their corresponding singular and autocorrelation values, are highlighted in gray. 
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FIG. S2. Comparison of the experimental artifacts (and noise) in the TRXL data before and after PEPC treatment. Experimental 

artifacts were extracted and compared for ΔS(q, t)exp and ΔS(q, t)PEPC obtained from [Au(CN)2
-]3 dissolved in water (Fig. 2(b)). 

To extract the experimental artifacts from ΔS(q, t)exp and ΔS(q, t)PEPC, each of ΔS(q, t)exp and ΔS(q, t)PEPC was smoothed in q-

space to generate a curve without sharp features arising from the experimental artifacts (left panel, black). The sharp artifact 

features were then extracted by subtracting the smoothed curve from ΔS(q, t)exp or ΔS(q, t)PEPC. A comparison of the sharp 

artifact features from ΔS(q, t)exp (ΔS(q, t)exp, art, right panel, blue) and ΔS(q, t)PEPC (ΔS(q, t)PEPC, art, right panel, red) shows that 

the shape and amplitude of sharp features remain almost unchanged before and after PEPC treatment. The comparison is shown 

for three representative time delays: 1.2 ps, 20 ps, and 300 ps. 
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FIG. S3. Comparison of the experimental artifacts (and noise) in the TRXL data before and after PEPC treatment. The artifact 

features were extracted and compared for ΔS(q, t)synch and ΔS(q, t)synch, PEPC obtained from [Au(CN)2
-]3 dissolved in water (Fig. 

3(a)). The contributions of (∂S/∂T)ρ from the water solvent and ΔS(q, t = 100 ps)exp were removed via the PEPC treatment. 

The same method used to extract artifact features in Fig. S2 was employed. Each of ΔS(q, t)synch and ΔS(q, t)synch, PEPC was 

smoothed in q-space to generate a smooth curve without sharp features arising from experimental artifacts (left panel, black). 

The sharp artifact features were then extracted by subtracting the smoothed curve from ΔS(q, t)synch or ΔS(q, t)synch, PEPC. 

Comparison of the extracted artifact features (right panel, ΔS(q, t)synch, art and ΔS(q, t)synch, PEPC, art) reveals a significant 

difference in amplitude between the two features, with ΔS(q, t)synch, PEPC, art showing much larger amplitude than ΔS(q, t)synch, 

art. The comparison indicates that the sharp artifact features were strengthened by the PEPC treatment. The comparison is 

shown for three representative time delays: 300 ps, 10 ns, and 300 ns. 
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FIG. S4. Comparison of the experimental artifacts (and noise) in the TRXL data before and after PEPC treatment. In contrast 

to the data shown in Fig. 3(a), where the components (∂S/∂T)ρ from water solvent and ΔS(q, t = 100 ps)exp were used as is, the 

two components were smoothed to remove the artifact features prior to the PEPC treatment. The resulting curves are denoted 

as ΔS(q, t)synch, PEPC, sm. Artifact features were then extracted using the same method used to extract artifact features in Fig. S2. 

Each of ΔS(q, t)synch and ΔS(q, t)synch, PEPC, sm was smoothed in q-space to generate a smooth curve without sharp features arising 

from experimental artifacts (left panel, black). The sharp artifact features were then extracted by subtracting the smoothed 

curve from ΔS(q, t)synch or ΔS(q, t)synch, PEPC, sm. The comparison (right panel, ΔS(q, t)synch, art and ΔS(q, t)synch, PEPC, sm, art) shows 

that the amplitudes of the artifact features in ΔS(q, t)synch and ΔS(q, t)synch, PEPC, sm are almost identical, demonstrating that the 

PEPC process does not create or enhance artifacts in the data when using signal components with a high signal-to-noise ratio, 

i.e., the components that do not contain sharp artifacts. The comparison is shown for three representative time delays: 300 ps, 

10 ns, and 300 ns. 
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FIG. S5. Comparisons between SADSreal and the corresponding SADSk, corr for three different molecular structures of reaction 

intermediates. Each of the three SADSreal’s corresponds to T1′, T1, and tetramer shown in Fig. 2(a), respectively. We calculated 

SADSk, corr for each k by correcting SADSk, PEPC to minimize the discrepancy between SADSk, corr and SADSreal. The resulting 

SADSreal’s and SADSk, corr’s are plotted together, and the residual (SADSk, corr - SADSreal) is also plotted to visualize the degree 

of agreement between the two. The comparison shows that the SADSk, corr for a given k matches only with the SADSreal for the 

correct molecular structure of intermediate. For instance, SADS1, corr matches only with SADSreal for T1′ and shows a significant 

discrepancy with SADSreal’s for T1 or the tetramer. 
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FIG. S6. SVD analysis of ΔS(q, t)XFEL, PEPC shown in Fig. 3(a). (a) First five RSVs weighted by their corresponding singular 

values. (b) First five LSVs. (c) Singular values, and the autocorrelation values for RSVs and LSVs from (a) and (b), 

respectively. The singular values and autocorrelation values, together with the shape of the RSVs, suggest that only a single 

significant component contributes to the signal. The significant LSV and RSV, along with its corresponding singular and 

autocorrelation value, are highlighted in gray. 
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FIG. S7. SVD analysis of ΔS(q, t)synch, PEPC shown in Fig. 3(a). (a) First five RSVs weighted by their corresponding singular 

values. (b) First five LSVs. (c) Singular values, and the autocorrelation values for RSVs and LSVs from (a) and (b), 

respectively. The singular values and autocorrelation values, together with the shape of the RSVs, suggest that only a single 

significant component contributes to the signal. The significant LSV and RSV, along with its corresponding singular and 

autocorrelation value, are highlighted in gray. 
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FIG. S8. SVD analysis of ΔS(q, t)PEPC shown in Fig. 4(c). (a) First five RSVs weighted by their corresponding singular values. 

(b) First five LSVs. (c) Singular values, and the autocorrelation values for RSVs and LSVs from (a) and (b), respectively. The 

singular values and autocorrelation values, together with the shape of the RSVs, suggest that only a single significant 

component contributes to the signal. The significant LSV and RSV, along with its corresponding singular and autocorrelation 

value, are highlighted in gray. 
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FIG. S9. Demonstration of the conventional nodal-point (NP) method for eliminating kinetic contributions in TRXL data. (a) 

Application of NP method to ΔS(q, t)exp shown in Fig. 2(b). We aimed to eliminate the kinetic contribution of (∂S/∂T)ρ of 

water by selecting 11 nodal points in the q-range of 1.0 – 6.5 Å-1. The time-dependent intensity profiles of ΔS(q, t)exp at the 11 

nodal points are shown in the right panel. The kinetic analysis of the time profiles revealed three time constants (2.2 ± 0.5 ps, 

185 ± 71 ps, and 100 ± 24 ns). (b) ΔS(q, t)solvent of cyclohexane. The positions of zero-crossing points, the q-points where 

ΔS(q, t)solvent = 0, depend on the relative ratio of (∂S/∂T)ρ and (∂S/∂ρ)T, leading to the absence of the nodal points for ΔS(q, 

t)solvent of cyclohexane. Consequently, the NP method cannot be used to eliminate the kinetic contributions of ΔS(q, t)solvent 

from the TRXL data for solvents like cyclohexane. 
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