Supplemental Figure 1

A

B

C

D

E

F

BF-IND4	BF-sodA	BF-sodB	BF-sodAB	
- +	- +	- +	- +	\leftarrow IPTG (1 mM)
				$\leftarrow \underset{(\text { R. sphaeroides SodB })}{\text { FeSOD }}$
	$4 \times$			$\leftarrow \underset{(V . \text { vulnificus SodA })}{\text { MnSOD }}$
		\square	\square	$\leftarrow \underset{(V . \text { vulnificus }}{\text { FeSOdB })}$
				$\leftarrow \underset{\text { (R. sphaeroides SodC) }}{\stackrel{\text { CuZnSOD }}{ }}$

G

Supplemental Figure 1

Figure S1. Effect of SodA, SodB, and KatG on the photoheterotrophic growth of BF.
Photoheterotrophic growth of BF expressing V. vulnificus sodA (BF-sodA, A), V. vulnificus sodB (BF-sodB, B), V. vulnificus sodA and sodB (BF-sodAB, C), and V. vulnificus katG (BF-katG, D) (Table S1) were recorded with total protein of cells cultured without 10 mM DMSO in the presence (closed circles) or absence (open circles) of 1 mM IPTG. BF carrying empty vector (BF-pIND, E) was included as a control. Cellular SOD (F) and catalase (G) activities were visualized by in-gel activity staining of native polyacrylamide (10%) gel loaded with the lysates of cells harvested at exponential phase.

Supplemental Figure 2

A
LC chromatograms (Dark + DMSO)

B
Absorption spectra of peaks

Supplemental Figure 2

Figure S2. Pigment analysis of mutants deficient in Bchl a-synthesis genes.

BF, BZ, BZF, and BC (Table S1) were cultured for 7 d without light (dark) in the presence of 75 mM DMSO as a terminal electron acceptor. Pigments were extracted from total cell lysates using extraction solution (acetone:methanol $=7: 2, \mathrm{v} / \mathrm{v}$), and analyzed by HPLC (A). Chlide a, 3HE-Chlide a, 3V-Bchlide a, and 3HEBchlide a were illustrated in metabolic pathway on top of the right panel (B). The absorption spectra (B) were shown to the right of the corresponding HPLC chromatograms (A) with pigment names on the peaks (B).

Supplemental Figure 3

A

B

C
$\Delta \mathrm{A}=0.002$
E

D

F
$] \Delta \mathrm{A}=0.02$
3V-Bpheo a

,

Supplemental Figure 3

Figure S3. Analysis of Bpheo a from WT cell and 3V-Bpheo a from BF.

Phytylated pigments were extracted from the membranes of WT (A) and BF cells (D) grown photoheterotrophically with 10 mM DMSO, and analyzed by HPLC. Bpheo a from WT membrane was monitored through absorbance at $749 \mathrm{~nm}(\mathrm{~A})$, whereas 3 V -Bpheo a was detected at 719 nm (D). Bchl a (A) and 3V-Bchl $a(\mathrm{D})$ were also illustrated in the chromatograms. Bchl $a(\mathrm{~B})$, Bpheo $a(\mathrm{C}), 3 \mathrm{~V}-\mathrm{Bchl} a(\mathrm{E})$, and 3V-Bpheo $a(\mathrm{~F})$ were confirmed by measuring the absorption spectra.

Supplemental Figure 4

Supplemental Figure 4

Figure S4. Quantification of $\mathrm{His}_{\mathbf{6}}$-tagged proteins via western immunoblot using anti-His $\mathbf{6}$-tag antibody.

BchG with C-terminal His_{6}-tag was produced in E. coli BL-Rsb (Table S1), and the cell lysate was subjected to western immunoblot analysis using an anti-His ${ }_{6}$-tag antibody to determine the BchG level (A). Varying amount of protoporphyrin ferrochelatase of Vibrio vulnificus with C-terminal His_{6} - $\mathrm{tag}\left(\mathrm{PpfC}^{2}-\mathrm{His}_{6}\right)$ was used as a quantification standard (A). Band intensities were scanned by densitometer, and standard curve was constructed (B). BchG-His ${ }_{6}$ in the lysate at 0.1 mg protein amounted to 6.6 pmole. In the same manner, Cterminally His_{6}-tagged subunit-H (PuhA-His ${ }_{6}$) of the purified WT-RC and V-RC was quantified (C). PpfCHis_{6} was used as a quantification standard (D). PuhA-His ${ }_{6}$ in $2.5 \mu \mathrm{~g}$ WT-RC and $2.0 \mu \mathrm{~g}$ V-RC was determined to be 23.3 and 18.8 pmole, respectively. $\mathrm{BchF}(\mathrm{WT}), \mathrm{BchF}^{\mathrm{L} 67 \mathrm{P}}(\mathrm{L} 67 \mathrm{P}), \mathrm{BchF}^{\mathrm{Y} 138 \mathrm{H}}(\mathrm{Y} 138 \mathrm{H})$, and $\operatorname{BchF}^{\mathrm{D} 101 \mathrm{~N}}(\mathrm{D} 101 \mathrm{~N})$ were produced in E. coli BL-WT, BL-L67P, BL-Y138H, and BL-D101N, respectively, and the cell lysates were subjected to western immunoblot analysis using an anti-His ${ }_{6}$-tag antibody to determine the BchF protein levels (E and F). C-terminally His ${ }_{6}$-tagged carbonic anhydrase of R. sphaeroides $\left(\mathrm{RsCA}^{-H i s}{ }_{6}\right)$ was used as a quantification standard. The amounts of $\mathrm{BchF}^{2}-\mathrm{His}_{6}$ in cell lysates at 0.02 mg protein were determined to be $2.7,1.5,1.5$, and 1.3 pmole for WT, L67P, Y138H, and D101N, respectively.

Supplemental Figure 5

Supplemental Figure 5

Figure S5. BchG reaction with 3V-Bchlide a and $3 H E-B c h l i d e ~ a$, and the pigment analysis of BFcfh recombinant strains grown under semi-aerobic conditions.

The stability of 3 V -Bchlide a was examined via absorption spectral analysis (A). 3V-Bchlide a was prepared from 3V-Bchl a using AtChlase. It was subsequently treated with $\mathrm{HCl}(0.2 \mathrm{M})$ for 1 min to obtain Bpheide a (A), which was further examined after storage for 24 h at $4^{\circ} \mathrm{C}(\mathrm{A})$. BchG reaction with 3 V -Bchlide a (C) and 3HE-Bchlide $a(\mathrm{D})$ as the substrates were examined in the presence of either GGPP or PPP. Reaction with Bchlide a was included as a control (E). E. coli lysate containing BchG-His $_{6}$ (1 mg protein) was used as an enzyme source, and the prenylated products were detected by HPLC (C, D, and E). The recombinant strains of BFcfh-puhA, BFcfh-puf, BFcfh-puc1, BFcfh-puc2, and BFcfh-415 were grown under semi-aerobic conditions, and the pigments from the membranes were extracted and analyzed for phytylated pigments by HPLC (B). Chlide a and Bchlide a were also extracted from both whole cells and the culture broth, and their levels were shown in a table to the right of the corresponding HPLC chromatograms (B). AU, arbitrary unit.

Supplemental Figure 6

The number of pigment per RC

RC	Bchl \boldsymbol{a}	3V-Bchl \boldsymbol{a}	Bpheo \boldsymbol{a}	3V-Bpheo \boldsymbol{a}	SO	SE
WT-RC	4.17 ± 0.32	ND^{a}	1.89 ± 0.19	ND	0.10 ± 0.01	0.80 ± 0.05
V-RC	ND	3.83 ± 0.09	ND	1.80 ± 0.06	0.11 ± 0.01	0.86 ± 0.07

${ }^{\text {a }}$ Not detected.
I
The pigment level and RC amount of BFcfh-puhA

3V-Bchl $\boldsymbol{a}^{\mathbf{a}}$ (pmole/mg)	3V-Bpheo $\boldsymbol{a}^{\boldsymbol{a}}$ (pmole/mg)	RC $^{\text {b }}$ (pmole/mg)
263 ± 6	118 ± 13	70 ± 3

[^0]
Supplemental Figure 6

Figure S6. Analysis of WT-RC and V-RC purified from the cells grown photoheterotrophically in the presence of 10 mM DMSO.

The WT-RC and V-RC were purified from Wcfh-puhA and BFcfh-puhA, respectively, cultured photoheterotrophically with 10 mM DMSO, and the absorption spectra were recorded with $\lambda_{\max }$ of Q_{y} peaks on the peaks (A). Both RCs were quantified by western immunoblot analysis using PpfC - His_{6} as the protein standard (B) and densitometric scan (C), by which 21.1 and 24.8 pmole of $\mathrm{PuhA}^{-H i s}{ }_{6}$ were detected with 2 $\mu \mathrm{g}$ of the WT-RC and V-RC, respectively. The pigments were extracted from $10 \mu \mathrm{~g}$ of the WT-RC (D and E) and V-RC (F and G) and subjected to HPLC analysis. Bchl a (with Bpheo a) of WT-RC (D), 3V-Bchl a (with 3V-Bpheo a) of V-RC (F), and their carotenoids (E and G) were quantified. Bchl a and Bpheo a of WT-RC were monitored at 751 nm , where both pigments have the same molar extinction coefficient (D). Likewise, 3V-Bchl a and 3V-Bpheo of V-RC pigments were scanned at 715 nm (F). Carotenoids were monitored at 482 nm (E and G). Absorption spectrum of each pigment was illustrated with $\lambda_{\max }$ of the prominent peaks on the insets of $\mathrm{D}, \mathrm{E}, \mathrm{F}$, and G . Collectively, the pigment contents per RC were determined (H), and shown with mean \pm standard deviation (SD). BFcfh-puhA was grown photoheterotrophically with 10 mM DMSO, and the membranes were analyzed to determine the levels of phytylated pigments and RC (I).

AU, arbitrary unit.

Supplemental Figure 7

A

D

E

> Absorption spectra of peaks

Supplemental Figure 7

Figure S7. Pigment analysis of the suppressor strains of BC.
BC did not grow photoheterotrophically (A). However, prolonged incubation (~ 2 weeks) of BC under photoheterotrophic conditions resulted in the emergence of growing suppressor cells at a frequency of $\sim 10^{-8}$. Three suppressor strains of BC were randomly selected from three independent selection trials. DNA sequence analysis of the $b c h F$ region from the chromosome of three suppressors $\mathrm{BCS} 1, \mathrm{BCS} 2$, and BCS 3 revealed the generation of point mutations, which were $\mathrm{L} 67 \mathrm{P}, \mathrm{Y} 138 \mathrm{H}$, and D 101 N , respectively. Photoheterotrophic growth of BC, BF, and the three BC suppressors were measured based on the total protein of cells grown in the presence of 10 mM DMSO as an antioxidant (A), and the absorption spectra of total cell lysates were recorded (B). Cells were grown in the dark with 75 mM DMSO as a terminal electron acceptor for 7 d , and the absorption spectra of total cellular lysates were recorded for comparative analysis of pigments (C). The pigments were extracted from total cell lysates, and analyzed by HPLC (D). Chlide a, 3HE-Chlide a, 3V-Bchlide a, and 3HE-Bchlide a were illustrated in metabolic pathway on top of the right panel (E). The absorption spectra (E) were shown to the right of the corresponding HPLC chromatograms (D) with pigment names on the peaks (E).

Supplemental Figure 8

A

B

C
Cell lysate (Dark + DMSO)

D
LC chromatograms (Dark + DMSO)

E
Absorption spectra of peaks

Supplemental Figure 8

Figure S8. Pigment analysis of BCF expressing the WT and mutated bchF DNAs.

Photoheterotrophic growth of BCF carrying pRK-BchF (BCF-WT), pRK-BchF ${ }^{\text {L67P }}$ (BCF-L67P), pRKBchF ${ }^{\mathrm{Y} 138 \mathrm{H}}(\mathrm{BCF}-\mathrm{Y} 138 \mathrm{H})$, and $\mathrm{pRK}-\mathrm{BchF}^{\mathrm{D} 101 \mathrm{~N}}(\mathrm{BCF}-\mathrm{D} 101 \mathrm{~N})$ (Table S1) were measured based on the total protein of cells grown in the presence of 10 mM DMSO as an antioxidant (A), and the absorption spectra of total cell lysates were recorded (B). BCF carrying an empty vector (BCF-415) was included as a control. Cells were grown in the dark with 75 mM DMSO as a terminal electron acceptor for 7 d , and the absorption spectra of total cellular lysates were recorded for comparative analysis of pigments (C). The pigments were extracted from total cell lysates, and analyzed by HPLC (D). Chlide a, 3HE-Chlide a, 3V-Bchlide a, and 3HE-Bchlide a were illustrated in metabolic pathway on top of the right panel (E). The absorption spectra (E) were shown to the right of the corresponding HPLC chromatograms (D) with pigment names on the peaks (E).

Table S1. Bacterial strains, primers and plasmids

Strains	Relevant characteristics	Source of reference
R. sphaeroides		
R. sphaeroides 2.4.1	Type strain (WT)	(S1)
BZ	Km; Previously known as BZ1; $\Delta b c h Z$ mutant; interruption by Km^{r} DNA	(S2)
BZF	Kmr; Previously known as BZF1; $\Delta b c h Z \Delta b c h F$ mutant; BZ with internal deletion in $b c h F$	(S2)
BF	$\Delta b c h F$ mutant; internal deletion in $b c h F$	This study
BC	$\Delta b c h C$ mutant; internal deletion in $b c h C$	This study
BP	$\Delta b c h P$ mutant; WT with internal deletion in bchP	This study
BFP	$\Delta b c h F \Delta b c h P$ mutant; BF with internal deletion in bchP	This study
BCF	$\Delta b c h C \Delta b c h F$ mutant; BC with internal deletion in $b c h F$	This study
BFc	$\Delta b c h F \triangle p u c 12 B A$ mutant; BF with internal deletion in puclBA and puc2BA	This study
BFcf	$\Delta b c h F \triangle p u c 12 B A \triangle p u f B A$ mutant; BFc with internal deletion in $p u f B A$	This study
Wcfh	$\triangle p u c 12 B A \triangle p u f B A \triangle p u h A$ mutant; WT with internal deletion in puc1BA, puc2BA, pufBA, and puhA	This study
BFcfh		This study
BCS1	Photoheterotrophically competent $B C$ suppressor; $B C$ with a mutation at the $67^{\text {th }}$ residue of BchF (CTG \rightarrow C $\underline{C G}$)	This study
BCS2	Photoheterotrophically competent BC suppressor; BC with a mutation at the $138^{\text {th }}$ residue of BchF ($\mathrm{TAC} \rightarrow \underline{\mathrm{CAC}}$)	This study
BCS3	Photoheterotrophically competent BC suppressor; BC with a mutation at the $101^{\text {st }}$ residue of $\operatorname{BchF}(\underline{G A T} \rightarrow \underline{\mathrm{AAT}}$)	This study
BF-sodA	Kmr; BF + pIND-sodA	This study
BF-sodB	Km; BF + pIND-sodB	This study
BF-sodAB	Kmr; BF + pIND-sodAB	This study
BF-katG	Km; BF + pIND-katG	This study
BF-IND4	Kmr; BF + pIND4	This study
Wcfh-puhA	Tcr ; Wcfh + pRK-PuhA, for purification of RC with C-terminally His_{6}-tagged PuhA	This study
Wcfh-puf	Tcr ${ }^{\text {r }}$ Wcfh + pRK-Puf, for purification of LH1 with C-terminally His ${ }_{6}$-tagged PufA	This study
Wcfh-puc1	Tcr; Wcfh + pRK-Puc1, for purification of LH2-1 with C-terminally His ${ }_{6}$-tagged Puc 1A	This study
Wcfh-puc2	Tr ${ }^{\text {r }}$ Wcfh + pRK-Puc2, for purification of LH2-2 with C-terminally His ${ }_{6}$-tagged Puc2A	This study
Wcfh-415	Tcr $;$ Wcfh + pRK415	This study
BFcfh-puhA	Tr ${ }^{\text {r }}$; BFcfh +pRK -PuhA, for purification of RC with C-terminally His ${ }_{6}$-tagged PuhA	This study
BFcfh-puf	Tcr; BFcfh +pRK -Puf, for purification of LH1 with C-terminally His ${ }_{6}$-tagged PufA	This study
BFcfh-puc1	Tcr $;$ BFcfh + pRK-Puc1, for purification of LH2-1 with C-terminally His 6_{6}-tagged Puc1A	This study
BFcfh-puc2	Tc^{r}; BFcfh $+\mathrm{pRK}-\mathrm{Puc} 2$, for purification of LH2-2 with C-terminally His 6_{6}-tagged Puc2A	This study
BFcfh-415	Tcr $;$ BFcfh + pRK415	This study
BCF-WT	Tcr; BCF + pRK-BchF	This study
BCF-L67P	Tcr $;$ BCF + $\mathrm{pRK}-\mathrm{BchF}{ }^{\text {L67P }}$	This study
BCF-Y138H	Tcr; BCF + pRK-BchF ${ }^{\text {Y138H }}$	This study
BCF-D101N	Tcr $;$ BCF + pRK-BchF ${ }^{\text {D101N }}$	This study
BCF-415	Tcr $;$ BCF + pRK415	This study
BFcf-WT	Tcr $;$ BFcf + pRK-BchF	This study
BFcf-L67P	Tcr $;$ BFcf + pRK-BchF ${ }^{\text {L67P }}$	This study
BFcf-Y138H	Tcr $;$ BFcf $+\mathrm{pRK}-\mathrm{BchF}{ }^{\mathrm{Y} 138 \mathrm{H}}$	This study
BFcf-D101N	Tcr $;$ BFcf + pRK-BchF ${ }^{\text {D101N }}$	This study
BFcf-415	Tcr $;$ BFcf +pRK 415	This study
E. coli		
DH5a phe		(S3)
S17-1	C600::RP-4 2-(Tc::Mu)(Km::Tn7) thi pro hsdR hsdM ${ }^{+}$recA	(S4)
BL21 (DE3)	E. coli $\mathrm{B} \mathrm{F}^{-}$dcm ompT $h s d S\left(\mathrm{rB}^{-} \mathrm{mB}^{-}\right)$gal $\lambda(\mathrm{DE} 3)$	Stratagene
BL-Chlase	Apr; BL21 (DE3) + pChlase	This study
BL-Rsb	Kmr; BL21 (DE3) + pET-Rsb	This study
BL-WT	Kmr; BL21 (DE3) + pET-BchF	This study
BL-L67P	Km; BL21 (DE3) + pET-BchF ${ }^{\text {L67P }}$	This study
BL-Y138H	Kmr; BL21 (DE3) + pET-BchF ${ }^{\text {Y138H }}$	This study
BL-D101N	Kmr; BL21 (DE3) + pET-BchF ${ }^{\text {D101N }}$	This study
BL-BchC	Km; BL21 (DE3) + pET-BchC	This study
BL-RsCA	Kmr; BL21 (DE3) + pET-RsCA	This study

Table S1. Bacterial strains, primers and plasmids

Primers	Nucleotide sequence (from 5' end to 3' end)	Note
B1F	GCATGCTCGGCCGCGAAGTGAGAG	SphI is underlined.
B1R	GAATTCCGCATCGCG TCGCGCAC	EcoRI is underlined.
B2F	GAATTCCTTGCGGCCTATGCGACC	EcoRI is underlined.
B2R	TCTAGAGGCAGCGTCG GCACGATG	$X b a \mathrm{I}$ is underlined.
B3F	GCATGCCCGCACCGCGAGACAGAC	$S p h \mathrm{I}$ is underlined.
B3R	GAATTCCATCTGCCCGGTGTAGAA	$E c o \mathrm{RI}$ is underlined.
B4F	GAATTCTCACCCACACCCGACCGG	EcoRI is underlined.
B4R	TCTAGATCCCAGTCGTGGAAGCCG	$X b a \mathrm{I}$ is underlined.
B5F	GCATGCCGCTGATCGGCCAGATGC	$S p h \mathrm{I}$ is underlined.
B5R	GAATTCCACGATCTGGCTGTCGGG	$E c o \mathrm{RI}$ is underlined.
B6F	GAATTCGTTCTCCGCTCGATGCAG	EcoRI is underlined.
B6R	TCTAGAACGCGGTCGGCGAAGACG	$X b a \mathrm{I}$ is underlined.
B7F	GCATGCGGCCGCCAAGCCATCCTG	$S p h \mathrm{I}$ is underlined.
B7R	GAATTCGCTCGGCCAGACTTTGTT	$E c o \mathrm{RI}$ is underlined.
B8F	GAATTCGTCGCGGCCGAGTAATGC	EcoRI is underlined.
B8R	TCTAGAAGCGCGAAGGGCATGATG	$X b a \mathrm{I}$ is underlined.
B9F	GCATGCGGGCACCTACGAGCTCAC	$S p h \mathrm{I}$ is underlined.
B9R	CTGCAGATCATCGGTCACTTGTAC	PstI I is underlined.
B10F	CTGCAGGTGACCGGCCTGCCGTTC	PstI is underlined.
B10R	TCTAGACTCGTCGCCGTCGAGCTC	$X b a \mathrm{I}$ is underlined.
B11F	GCATGCTCGGGACGGAGATGGACAGC	$S p h \mathrm{I}$ is underlined.
B11R	GAATTCGTCCGTAAGACCTGTGTAG	$E c o$ RI is underlined.
B12F	GAATTCATCCTGCTGAGCACCCCC	EcoRI is underlined.
B12R	TCTAGAGTAGGTGTAGCCCGTGTTCG	$X b a \mathrm{I}$ is underlined.
B13F	GCATGCCTGCTCGTGCTTTTCGC	$S p h \mathrm{I}$ is underlined.
B13R	GAATTCCGACGCCAGATCGAAGTT	EcoRI is underlined.
B14F	GAATTCGCGATGCTGGCCGAATAC	EcoRI is underlined.
B14R	TCTAGATGAAGGGCAGGTTCAGCG	$X b a \mathrm{I}$ is underlined.
B15F	GGATCCATGTCACACACTTTCCCTG	Bam HI is underlined.
B15R	AAGCTTTTAGCCTATTGCTTGAGCAT	HindIII is underlined.
B16F	GGATCCATGGCATTTGAACTACCAG	Bam HI is underlined.
B16R	AAGCTTTTATTTCGCT AGGTTCTCTGC	HindIII is underlined.
B17F	GGATCCATGGAACACAAACCTACCC	Bam HI is underlined.
B17R	AAGCTTTTAGATATCGAAGCGATCCG	HindIII is underlined.
B18F	GGTACCAACCGAAGGTAATCCCTTC	$K p n \mathrm{I}$ is underlined.
B18R	GGTACCTTAGCCTATT GCTTGAGCAT	$K p n \mathrm{I}$ is underlined.
B19F	GGTCTCGAATGGCGGCGATAGAGGAC	$B s a \mathrm{I}$ is underlined.
B19R	GGTCTCAGCGCTGACGAAGATACCAGAAGCTTC	$B s a \mathrm{I}$ is underlined.
B20F	CATATGAGTGTCAATCTATCCTTAC	$N d e \mathrm{I}$ is underlined.
B20R	AAGCTTCGGCAGCACCTCCAGCCC	HindIII is underlined.
B21F	CTGCAGCACGCCCTGAATGTGGGC	PstI is underlined.
B21R	TCTAGAGTCGGCCTGCACGCGGGC	$X b a \mathrm{I}$ is underlined.
B22F	TCTAGAACCTGACACCGGAGGACC	$X b a \mathrm{I}$ is underlined.
B22R	GAATTCTCAGTGGTGGTGGTGGTGGTGGGCGTATTCGGCCAGCATCGC	EcoRI is underlined, His_{6}-tag sequence is in boldface.
B23F	TCTAGACGCCACCGCAGGCTTCCC	$X b a \mathrm{I}$ is underlined.
B23R	GGTACCTTAGTGGTGGTGGTGGTGGTGCCCGCCCTCGGCGACGGCGACGCG	$K p n \mathrm{I}$ is underlined, His_{6}-tag sequence is in boldface.
B24F	AAGCTTACGCCCTGAATGTGGGCG	HindIII is underlined.
B24R	TCTAGATTAGTGGTGGTGGTGGTGGTGCCCGCCCTCGGCCGCGACCGCAGC	$X b a \mathrm{I}$ is underlined, His_{6}-tag sequence is in boldface.
B25F	TCTAGAGGCCCTACACGCATCGAG	$X b a \mathrm{I}$ is underlined.
B25R	GGTACCTTAGTGGTGGTGGTGGTGGTGCCCGCCTTGCGCGGCCGGAACGAA	$K p n \mathrm{I}$ is underlined, His_{6}-tag sequence is in boldface.
B26F	CATATGCAGCCCACGTCCCCCGCAG	Nde I is underlined.
B26R	AAGCTTTTGCGCGGCCTCCATGTC	HindIII is underlined.
B27F	AAGCTTATCACCAGCTCCGCCGGG	HindIII is underlined.
B27R	GGTACCTCATTGCGCG GCCTCCATG	$K p n \mathrm{I}$ is underlined.
B28F	CATATGAGAACGACCGCCGTCATC	$N d e \mathrm{I}$ is underlined.
B28R	AAGCTTTGCGGTG GCCCTCCAATC	HindIII is underlined.
B29F	CATATGCACAATGCGAGGCCGC	$N d e \mathrm{I}$ is underlined.
B29R	AAGCTTGACCGGCACGAAGCCCTG	HindIII is underlined.

Table S1. Bacterial strains, primers and plasmids

Plasmids	Relevant characteristics	Source of reference
pLO1	Km^{r}; sacB ${ }^{+}$, RP4 oriT, ColE1 ori, suicide vector for mutant construction	(S5)
pIND4	Km^{r}; lac ${ }^{\mathrm{T}}$, $\mathrm{pMG1} 60$ oriT, ColE1 ori, inducible expression vector for His_{6}-tagged protein in R. sphaeroides	(S6)
pASK-IBA3plus	Ap^{r}, inducible expression vector for strep-tagged protein in E. coli	IBA Life sciences
pET29a	Km^{r}, inducible expression vector for His_{6}-tagged protein in E. coli	Novagen
pRK415	Tcr ; ori IncP Mob RP4 lacZ α, expression vector for R. sphaeroides	(S7)
pLO-bchF	pLO1 + 1,114-bp SphI/XbaI fragment containing internally deleted bchF gene	This study
pLO-bchC	$\mathrm{pLO} 1+$ 1,044-bp SphI/XbaI fragment containing internally deleted $b c h C$ gene	This study
pLO-bchP	$\mathrm{pLO} 1+1,046-\mathrm{bp} S p h \mathrm{I} / X b a \mathrm{I}$ fragment containing internally deleted bchP gene	This study
pLO-puc1BA	$\mathrm{pLO} 1+1,012-\mathrm{bp} \operatorname{SphI} / X b a \mathrm{I}$ fragment containing internally deleted puclBA gene	This study
pLO-puc2BA	$\mathrm{pLO} 1+967-\mathrm{bp} \mathrm{SphI} / X b a \mathrm{I}$ fragment containing internally deleted puc2BA gene	This study
pLO-pufBA	$\mathrm{pLO} 1+1,355-\mathrm{bp} S p h \mathrm{I} / X b a \mathrm{I}$ fragment containing internally deleted pufBA gene	This study
pLO-puhA	$\mathrm{pLO} 1+$ 1,010-bp SphI/XbaI fragment containing internally deleted puh A gene	This study
pIND-sodA	pIND4 + 609-bp BamHI/HindIII fragment containing V. vulnificus sodA gene	This study
pIND-sodB	pIND4 + 585-bp BamHI/HindIII fragment containing V. vulnificus sodB gene	This study
pIND-sodAB	pIND4 + 1,234-bp BamHI/HindIII fragment containing V. vulnificus sodA and $\operatorname{sod} B$ genes	This study
pIND-katG	pIND4 + 2,172-bp BamHI/HindIII fragment containing V. vulnificus katG gene	This study
pChlase	pASK-IBA3plus + 972-bp BsaI fragment containing A. thaliana chlorophyllase gene	This study
pET-Rsb	pET29a + 906-bp NdeI/HindIII fragment containing R. sphaeroides bch G gene	This study
pRK-PuhA	pRK415 + 1,499-bp PstI/EcoRI fragment containing puc promoter and puhA gene with C-terminal His_{6} codon, for expression of His_{6}-tagged RC in R. sphaeroides	This study
pRK-Puf	pRK415 + 1,252-bp PstI/KpnI fragment containing puc promoter and pufBA gene with C-terminal His_{6} on $p u f A$, for expression of His_{6}-tagged LH1 in R. sphaeroides	This study
pRK-Puc1	pRK415 + 1,068-bp HindIII/XbaI fragment containing puc promoter and puclBA gene with C-terminal His_{6} on $p u c 1 A$, for expression of His_{6}-tagged LH2-1 in R. sphaeroides	This study
pRK-Puc2	pRK415 + 1,697-bp PstI/KpnI fragment containing puc promoter and puc2BA gene with C-terminal His_{6} on $p u c 2 A$, for expression of His_{6}-tagged LH2-2 in R. sphaeroides	This study
pET-BchF	pET29a $+480-\mathrm{bp}$ NdeI/HindIII fragment containing WT bchF gene	This study
pET-BchF ${ }^{\text {L67P }}$	pET-BchF with point mutation of L67P (CTG \rightarrow CCG)	This study
pET-BchF ${ }^{\text {Y138H }}$	pET-BchF with point mutation of Y138H (TAC $\rightarrow \underline{\mathrm{C} A C}$)	This study
pET-BchF ${ }^{\text {D101N }}$	pET-BchF with point mutation of D101N (GAT \rightarrow AAT)	This study
pRK-BchF	pRK415 + 857-bp HindIII/KpnI fragment containing WT bchF gene	This study
pRK-BchF ${ }^{\text {L67P }}$	pRK-BchF with point mutation of L67P (CTG \rightarrow CCG) on bchF	This study
pRK-BchF ${ }^{\text {Y138H }}$	pRK-BchF with point mutation of Y138H (TAC \rightarrow CAC) on bchF	This study
pRK-BchF ${ }^{\text {D101N }}$	pRK-BchF with point mutation of D101N (G-GT $\rightarrow \underline{\text { AAT }}$) on bchF	This study
pET-BchC	pET29a +954-bp NdeI/HindIII fragment containing R. sphaeroides bchC gene	This study
pET-RsCA	pET29a + 642-bp NdeI/HindIII fragment containing R. sphaeroides carbonic anhydrase	This study

Supplemental Text 1

Plasmid constructions

1. Plasmid for in-frame deletion of bchF

The $522-\mathrm{bp}$ DNA upstream from the $24^{\text {th }}$ codon and the $592-\mathrm{bp}$ DNA downstream from the $132^{\text {nd }}$ codon of Rhodobacter sphaeroides bchF (RSP 0284) were PCR-amplified using the primer sets of $\mathrm{B} 1 \mathrm{~F} / \mathrm{B} 1 \mathrm{R}$ and $\mathrm{B} 2 \mathrm{~F} / \mathrm{B} 2 \mathrm{R}$, respectively (all primers are listed in Table S 1). The DNA fragment from B1F/B1R was digested with $S p h \mathrm{I} / E c o$ RI, and the fragment from B2F/B2R was digested with $E c o \mathrm{RI} / X b a \mathrm{I}$. The resulting fragments were ligated into $S p h \mathrm{I} / X b a \mathrm{I}$ sites of pLO 1 (S5) to yield pLO-bchF.

2. Plasmid for in-frame deletion of $\boldsymbol{b} \boldsymbol{c h} \boldsymbol{C}$

The 494-bp DNA upstream from the 51st codon and the 550-bp DNA downstream from the $286^{\text {th }}$ codon of R. sphaeroides bchC (RSP_0263) were PCRamplified using the primer sets of $\mathrm{B} 3 \mathrm{~F} / \mathrm{B} 3 \mathrm{R}$ and $\mathrm{B} 4 \mathrm{~F} / \mathrm{B} 4 \mathrm{R}$, respectively. The fragments were digested with the restriction enzymes and ligated into pLO in the same manner as pLO-bchF to yield pLO-bchC.

3. Plasmid for in-frame deletion of $b \boldsymbol{c h P}$

A 547-bp DNA upstream from the $60^{\text {th }}$ codon and the $499-$ bp DNA downstream from the $326^{\text {th }}$ codon of R. sphaeroides bchP (RSP_0277) were PCRamplified using the primer sets of $\mathrm{B} 5 \mathrm{~F} / \mathrm{B} 5 \mathrm{R}$ and $\mathrm{B} 6 \mathrm{~F} / \mathrm{B} 6 \mathrm{R}$, respectively. The fragments were digested with the restriction enzymes and ligated into pLO 1 in the same manner as $\mathrm{pLO}-\mathrm{bchF}$ to yield $\mathrm{pLO}-\mathrm{bchP}$.

4. Plasmid for in-frame deletion of puc1BA

The 441-bp DNA upstream from the $11^{\text {th }}$ codon of R. sphaeroides puclB (RSP_0314) and the 571-bp DNA downstream from the $51^{\text {st }}$ codon of puclA (RSP_6256) were PCR-amplified using the primer sets of B7F/B7R and B8F/B8R, respectively. The fragments were digested with the restriction enzymes and ligated into pLO 1 in the same manner as $\mathrm{pLO}-\mathrm{bchF}$ to yield pLO-puc1BA.

5. Plasmid for in-frame deletion of puc2BA

The 436-bp DNA upstream from the $4^{\text {th }}$ codon of R. sphaeroides puc $2 B$ ($\mathrm{RSP} _1556$) and the 531-bp DNA downstream from the $253{ }^{\text {rd }}$ codon of puc $2 A$ (RSP_1557) were PCR-amplified using the primer sets of B9F/B9R and B10F/B10R, respectively. The fragments were digested with the restriction enzymes and ligated into pLO 1 in the same manner as $\mathrm{pLO}-\mathrm{bchF}$ to yield pLO-puc2BA.

6. Plasmid for in-frame deletion of pufBA

The $659-\mathrm{bp}$ DNA upstream from the $14^{\text {th }}$ codon of R. sphaeroides pufB (RSP_6108) and the 696-bp DNA downstream from the $34^{\text {th }}$ codon of pufA (RSP_0258) were PCR-amplified using the primer sets of $\mathrm{B} 11 \mathrm{~F} / \mathrm{B} 11 \mathrm{R}$ and $\mathrm{B} 12 \mathrm{~F} / \mathrm{B} 12 \mathrm{R}$, respectively. The fragments were digested with the restriction enzymes and ligated into pLO1 in the same manner as pLO-bchF to yield pLO-pufBA.

7. Plasmid for in-frame deletion of $p u h A$

The $489-\mathrm{bp}$ DNA upstream from the $14^{\text {th }}$ codon and the 521-bp DNA downstream from the $254^{\text {th }}$ codon of R. sphaeroides puhA (RSP_0291) were PCRamplified using the primer sets of $\mathrm{B} 13 \mathrm{~F} / \mathrm{B} 13 \mathrm{R}$ and $\mathrm{B} 14 \mathrm{~F} / \mathrm{B} 14 \mathrm{R}$, respectively. The fragments were digested with the restriction enzymes and ligated into pLO 1 in the same manner as $\mathrm{pLO}-\mathrm{bchF}$ to yield $\mathrm{pLO}-\mathrm{puhA}$.

8. Plasmids for inducible expression of SODs and catalase in \boldsymbol{R}. sphaeroides

The structural gene of Vibrio vulnificus sodA (VVMO6_RS01095), sodB (VVMO6_RS10185), and katG (VVMO6_RS08565) were PCR-amplified using the primer sets of $\mathrm{B} 15 \mathrm{~F} / \mathrm{B} 15 \mathrm{R}, \mathrm{B} 16 \mathrm{~F} / \mathrm{B} 16 \mathrm{R}$, and $\mathrm{B} 17 \mathrm{~F} / \mathrm{B} 17 \mathrm{R}$, respectively. The resulting $609-\mathrm{bp}, 585-\mathrm{bp}$, and 2172-bp DNA fragments of sodA, sodB, and $k a t G$ were digested with BamHI/HindIII and ligated into pIND4 (S6) to construct pIND-sodA, pIND-sodB, and pIND-katG, respectively. For construction of pIND-sodAB, a 609-bp fragment of $\operatorname{sod} A$ was PCR-amplified using the primer set of B15F/B18R, and a 625-bp fragment of sodB extending from the 40 bp upstream of the start codon to its stop codon was PCR-amplified using the primer set of B18F/B16R. The sodA and sodB fragment were digested with $B a m \mathrm{HI} / K p n \mathrm{I}$ and $\mathrm{KpnI} / H i n d I I I$, respectively, and the two fragments were ligated into Bam $\mathrm{HI} / H i n d I I I$ site of pIND4 to construct pIND-sodAB.

Supplemental Text 1

Plasmid constructions

9. Plasmid for purification of Arabidopsis thaliana chlorophyllase

The gene fragment of chlorophyllase 1 (AtCLH1 as AtChlase) extending from the start codon to its penultimate codon was amplified by PCR from total cDNA of A. thaliana using the primer set of B19F/B19R. The 972-bp fragment was digested with BsaI and ligated into pASK-IBA3plus (IBA Life sciences, Göttingen, Germany) to yield pChlase.

10. Plasmid for overexpression of BchG of R. sphaeroides in E. coil

The structural gene of R. sphaeroides $b c h G($ RSP_0279) extending from the start codon to its penultimate codon was PCR-amplified using the primer set of B20F/B20R. The 906-bp PCR product was digested with NdeI/HindIII and cloned into pET29a (Novagen, Madison, WI, USA) to yield pET-Rsb.

11. Plasmids for purification of $\mathrm{His}_{\mathbf{6}}$-tagged RC and LHs from R. sphaeroides

The 698-bp fragment containing promoter region of R. sphaeroides puc operon $\left(\mathrm{P}_{p u c}\right)(\mathrm{S} 8)$ was PCR -amplified using the primer set of $\mathrm{B} 21 \mathrm{~F} / \mathrm{B} 21 \mathrm{R}$ and digested with PstI/XbaI. The 801-bp fragment from the 24 bp upstream of the start codon of R. sphaeroides puhA to its penultimate codon was PCRamplified using the primer set of $\mathrm{B} 22 \mathrm{~F} / \mathrm{B} 22 \mathrm{R}$, followed by digestion with $X b a \mathrm{I} / E c o \mathrm{RI}$ and cloned into PstI/EcoRI site of pRK415 (S7) together with $\mathrm{P}_{p u c}$, yielding pRK-PuhA. The 554-bp fragment from the 217 bp upstream of the start codon of R. sphaeroides pufB to the penultimate codon of pufA was PCRamplified using the primer set of $\mathrm{B} 23 \mathrm{~F} / \mathrm{B} 23 \mathrm{R}$, followed by digestion with $X b a \mathrm{I} / K p n \mathrm{I}$ and cloned into $\operatorname{PstI} / K p n \mathrm{I}$ site of pRK 415 together with $\mathrm{P}_{p u c}$, yielding pRK-Puf. The 1,068-bp fragment from the 735 bp upstream of the start codon of R. sphaeroides puclB to the penultimate codon of puclA was PCR-amplified using the primer set of B24F/B24R, digested with HindIII/XbaI, and cloned into the same site of pRK415, yielding pRK-Puc1. The 999-bp fragment from the 41 bp upstream of the start codon of R. sphaeroides puc $2 B$ to the penultimate codon of puc $2 A$ was PCR-amplified using the primer set of B25F/B25R, followed by digestion with $X b a \mathrm{I} / K p n \mathrm{I}$ and cloned into PstI/KpnI site of pRK415 together with $\mathrm{P}_{p u c}$, yielding pRK-Puc2.
12. Plasmids for overexpression of BchF of R. sphaeroides in E. coil

The structural gene of R. sphaeroides bchF (RSP_0284) extending from the start codon to its penultimate codon was PCR-amplified using the primer set of B26F/B26R. The 480-bp PCR product was digested with NdeI/HindIII and cloned into pET29a. Genomic DNA of WT cell, BCS1, BCS2, and BCS3 were used as templates for PCR using the primer set of B26F/B26R to yield pET-BchF, pET-BchF ${ }^{\text {L67P }}, \mathrm{pET}^{\mathrm{B}}$-BchF ${ }^{\mathrm{Y} 138 \mathrm{H}}$, and pET^{2}-BchF ${ }^{\text {D101N }}$, respectively.

13. Plasmids for overexpression of BchF in R. sphaeroides

The gene fragment extending from the 374 bp upstream from the start codon of R. sphaeroides bchF (RSP_0284) to its stop codon was PCR-amplified using the primer set of B27F/B27R. The 857-bp PCR product was digested with HindIII/KpnI and cloned into pRK415. Genomic DNA of WT cell, BCS1, BCS2, and BCS3 were used as templates for PCR using the primer set of B27F/B27R to yield pRK-BchF, pRK^{2}-BchF ${ }^{\mathrm{L} 67 \mathrm{P}}, \mathrm{pRK}^{-B c h F}{ }^{\mathrm{Y} 138 \mathrm{H}}$, and $\mathrm{pRK}-$ BchF ${ }^{\text {D101N }}$, respectively.

14. Plasmid for overexpression of BchC of R. sphaeroides in E. coil

The structural gene of R. sphaeroides bchC (RSP_0263) extending from the start codon to its penultimate codon was PCR-amplified using the primer set of B28F/B28R. The 954-bp PCR product was digested with NdeI/HindIII and cloned into pET29a to yield pET-BchC.
15. Plasmid for overexpression of carbonic anhydrase of R. sphaeroides in E. coil

The structural gene of R. sphaeroides carbonic anhydrase (RSP_1377, RsCA) extending from the start codon to its penultimate codon was PCR-amplified using the primer set of B29F/B29R. The 642-bp fragment was digested with NdeI/HindIII and cloned into pET29a to yield pET-RsCA.

Supplemental Text 1

Construction of R. sphaeroides mutants

Target genes were disrupted by in-frame deletion as described previously (S9). All plasmids for mutant construction (Table S1) were transformed into E. coli $\mathrm{S} 17-1$ (S4) and then mobilized into R. sphaeoroides through conjugation (S 10). Single-crossover recombinants of R. sphaeroides with the Km ${ }^{\mathrm{r}}$ phenotype were selected on Sis agar plate supplemented with Km , and subsequently segregated on medium containing 15% (w / v) sucrose to obtain double-crossover recombinants, Km^{s} and sucrose ${ }^{\mathrm{r}}$. The final mutants with internal gene deletions were confirmed by PCR analysis of genomic DNA.
R. sphaeroides mutants BF and BC were generated by mobilizing pLO-bchF and pLO-bchC, respectively, into WT cells. Mutants BP and BFP were generated by interrupting $b c h P$ in WT and BF cells, respectively, using pLO-bchP. Mutant BCF was generated by interrupting $b c h F$ in BC using pLObchF. Mutant BFc was generated by sequentially interrupting puclBA and puc2BA in BF using pLO-puc1BA and pLO-puc2BA, respectively. Mutant BFcf was generated by interrupting $p u f B A$ from BFc using pLO-pufBA. Sequential interruption of puclBA, puc $2 B A$, pufBA, and puhA in WT cells using pLOpuc1BA, pLO-puc2BA, pLO-pufBA, and pLO-puhA, respectively, generated mutant Wcfh. Deletion of puhA from BFcf yielded BFcfh.

Spectral analysis of culture supernatant and cell membrane

R. sphaeroides cells showing exponential growth in the dark with 75 mM DMSO or under photoheterotrophic conditions with or without 10 mM DMSO were centrifuged at $6,000 \times g$ for 5 min at $4^{\circ} \mathrm{C}$ and the supernatant was used for spectral analysis. The cell pellet was washed once with 10 mM phosphatebuffered saline (PBS, pH 7.4) and resuspended in the same buffer. Cells were disrupted by sonication (Branson Sonifier model 250; Danbury, CT, USA) on ice for 5 min , three times. Cell lysates were centrifuged at $6,000 \times g$ for 10 min at $4^{\circ} \mathrm{C}$ and the supernatant was centrifuged at $100,000 \times g$ for 1 h at $4^{\circ} \mathrm{C}$. The membrane pellets were washed once with PBS and resuspended in PBS supplemented with $1 \% n$-dodecyl β-D-maltoside (DDM), which was continuously mixed for 1 h at $4^{\circ} \mathrm{C}$. Insoluble materials were removed by centrifugation at $12,000 \times \mathrm{g}$ for 5 min at $4^{\circ} \mathrm{C}$. The membrane fraction in the supernatant was quantified by the Lowry method (S11), and the absorption spectrum of the sample (0.5 mg protein) was recorded using a Shimadzu UV 2550 spectrophotometer (Kyoto, Japan).

In-gel activity staining of SOD and catalase

Exponentially growing photoheterotrophic cells were harvested, washed, and resuspended in PBS. Cell lysates were obtained by sonication and loaded onto a native gel (10% polyacrylamide gel without sodium dodecyl sulfate [SDS] and dithiothreitol). SOD activity was visualized in a native gel using nitrotetrazolium blue (Sigma-Aldrich, St. Louis, MO, USA) as described previously (S 12). Catalase activity was visualized in a native gel using $\mathrm{H}_{2} \mathrm{O}_{2}$, FeCl_{3}, and $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ as described previously (S13).

References for Supplemental materials

References

S1. Sistrom WR. 1960. A Requirement for Sodium in the Growth of Rhodopseudomonas spheroides. J Gen Microbiol 22:778-785.
S2. Kim E-J, Kim J-S, Lee I-H, Rhee HJ, Lee JK. 2008. Superoxide generation by chlorophyllide a reductase of Rhodobacter sphaeroides. J Biol Chem 283:3718-3730.

S3. Eraso JM, Kaplan S. 1994. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol 176:32-43.

S4. Simon R, Priefer U, Pühler A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1:784-791.

S5. Lenz O, Schwartz E, Dernedde J, Eitinger M, Friedrich B. 1994. The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol 176:4385-4393.

S6. Ind AC, Porter SL, Brown MT, Byles ED, de Beyer JA, Godfrey SA, Armitage JP. 2009. Inducible-expression plasmid for Rhodobacter sphaeroides and Paracoccus denitrificans. Appl Environ Microbiol 75:6613-6615.

S7. Keen NT, Tamaki S, Kobayashi D, Troilinger D. 1988. Improved brood-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191197.

S8. Lee JK, Kaplan S. 1995. Transcriptional regulation of puc operon expression in Rhodobacter sphaeroides. J Biol Chem 270:20453-20458.
S9. Kim E-J, Kim J-S, Kim M-S, Lee JK. 2006. Effect of changes in the level of light harvesting complexes of Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen. Int J Hydrogen Energy 31:531-538.

S10. Davis J, Donohue TJ, Kaplan S. 1988. Construction, characterization, and complementation of a Puf- mutant of Rhodobacter sphaeroides. J Bacteriol 170:320-329.

S11. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-275.
S12. Kho DH, Yoo S-B, Kim J-S, Kim E-J, Lee JK. 2004. Characterization of Cu- and Zn-containing superoxide dismutase of Rhodobacter sphaeroides. FEMS Microbiol Lett 234:261-267.

S13. Wayne LG, Diaz GA. 1986. A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide electrophoresis gels. Anal Biochem 157:89-92.

[^0]: ${ }^{a}$ Total phytylated pigments were extracted from membrane, analyzed, and normalized by protein level (mg).
 ${ }^{\text {b }}$ Estimated by PuhA-His 6 level in membrane using western immunoblot.

