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Supplementary Methods 

1. TRXL experiments 

TRXL experiments were performed at the XSS beamline of PAL-XFEL (the Pohang 

Accelerator Laboratory x-ray free-electron laser). In the TRXL experiment, the sample 

solution of I3
- was irradiated by an optical laser pulse to initiate a photoinduced reaction of 

the sample molecules, and a time-delayed x-ray pulse was used to probe the progress of the 

reaction. Femtosecond laser pulses at the center wavelength of 800 nm were generated from a 

Ti:sapphire regenerative amplifier and converted to 100-fs pulses at a wavelength of 400 nm 

by second-harmonic generation. The laser beam was focused by a lens to a spot of 260-μm 

diameter at the sample position, yielding a laser fluence of 1.8 mJ mm−2. Femtosecond x-ray 

pulses were generated from the x-ray free-electron laser (XFEL) by self-amplified 

spontaneous emission. The x-ray pulses have center energy of 12.7 keV with a narrow energy 

bandwidth (ΔE/E = 0.3%). The x-ray beam was focused to a spot 40 μm in diameter at the 

sample position. The laser and x-ray beams were overlapped at the sample position with a 

crossing angle of 10°. The x-ray scattering patterns from the photoexcited I3
- solution 

generated by the x-ray pulses were measured with an area detector (MX225-HS, Rayonix) 

over a q range of 1.0 Å−1 to 7.0 Å−1 with a sample-to-detector distance of 41 mm. The TRXL 

data were measured at various time delays in the range -0.6 ps to 6.9 ps with a time step of 

0.1 ps, 7.2, 7.5, 7.8, 8.4, 8.7, 9.0, 9.3, 9.6, 12.2, 15.5, 19.6, 24.7, 31. 2, 39.4, 49.7, 62.7, 79.0, 

and 99.6 ps yielding a total of 95 time delays. Each scattering image was obtained with a 

single x-ray pulse and, to achieve a signal-to-noise ratio (SNR) sufficient for data analysis, 

around 200 images were acquired at each time delay. Especially for charge distribution 

analysis, an additional dataset covers 100 ps time delay with several reference time delays 

were consciously measured to achieve the high SNR, and around 2000 images were acquired 

for each time delay. The laser-off images were acquired with the x-ray pulse arriving 20 ps 
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earlier than the laser pulse (that is, with a −20 ps time delay) to probe the (unexcited) 

molecules in the ground state while ensuring the same average temperature of the sample 

solution. These laser-off images were repeatedly collected before every laser-on image and 

were subtracted from the laser-on images to yield time-resolved difference scattering patterns 

of the I3
- solution. The resultant time-resolved difference scattering curves are shown in 

Supplementary Fig. 2. An I3
- solution was prepared by mixing I2 (from Aldrich, reagent grade) 

and KI (from Aldrich, reagent grade) with a 1:1 molar ratio in methanol with concentrations 

of 20 mM. In addition, 20 mM solution of 4-bromo-4′-(N,N-diethylamino)-azobenzene 

(HANCHEM, 99.9%) in methanol was prepared to measure the solvent heating signals. Since 

I3
– ion is formed via equilibrium between (I2 + I–) and I3

–, some of I2 and I– may still exist in 

solution. Those remaining reactants may cause complexity in the analysis of static x-ray 

scattering but not in the pump-probe scheme used in this work. Since I– does not absorb at 

400 nm and the extinction coefficient of I2 at 400 nm is smaller than that of I3
– by a factor of 

~100, I2 and I– do not undergo photoinduced reactions effectively by 400 nm irradiation. 

Therefore, the scattering signals from the remaining reactants (I2 and I–) are canceled off by 

the pump-probe differencing scheme and do not appear in the difference scattering data. The 

sample solution was excited by the laser pulses of 400 nm wavelength. The sample solution 

was circulated through a nozzle with a 300-μm-thick aperture. To supply a fresh sample for 

every laser and x-ray shot, the flow velocity of the sample was set to be over 3 m s−1. To 

prevent the scattering signal from contamination by radiation-damaged sample molecules, the 

sample in the reservoir was replaced with a fresh one whenever the transient signal measured 

at 100 ps was no longer reproduced. Even if the transient signal at 100 ps did not change, the 

sample in the reservoir was regularly replaced (every 2 ~ 3 h of measurement) to ensure the 

supply of fresh samples. 
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2. Generation of time-resolved difference scattering curves 

We note that the two-dimensional scattering images have anisotropic components arising 

from the anisotropic orientational distributions of excited and ground-state molecules1. Two-

dimensional scattering images recorded on the CCD detector were averaged and decomposed 

to give isotropic and anisotropic one-dimensional scattering curves, Siso(q,t) and Saniso(q,t) 

respectively, as a function of momentum transfer, q, and time delay, t, between the laser and 

x-ray pulses2. Time-resolved difference scattering curves, ΔSiso(q,t) and ΔSaniso(q,t), were 

generated by subtracting the reference data measured at –20 ps from the data at other time 

delays. Extracted qΔSiso(q,t) and qΔSaniso(q,t) are shown in Supplementary Fig. 2 in the form 

of contour plots and Supplementary Fig. 14 in the form of individual curves. 

 

3. Determining the molecular structure and atomic charge distribution of the ground 

state 

Since the structural dynamics from 100 ps to 3 μs were previously studied by TRXL3, we first 

checked the data at 100 ps to ensure that the expected species were observed at 100 ps. As 

can be seen in Supplementary Fig. 3, the two scattering curves at 100 ps measured at the 

XFEL and synchrotron coincide with each other after adjusting the contributions of the 

solvent heating curve and correcting the effect arising from the different x-ray wavelength 

spectra. Noticeably, the 100-ps scattering curve measured at the XFEL has a significantly 

better signal-to-noise ratio (SNR) than the previously reported curve measured at the 

synchrotron4. Thanks to the better SNR achieved in the TRXL data presented in this work, we 

were able to further optimize the structure of I3
- in the ground state, yielding the asymmetric 

bent structure shown in Fig. 2b. 

To determine the structure and charge distribution of I3
- in the ground state, a 

structural fitting analysis was performed using ΔSaz at 100 ps. According to previous studies 
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on the reaction dynamics of I3
-, I2

- and I radical are the only dominant species at 100 ps, and 

thus we considered Debye scattering curves of I3
-, I2

- and I radical for calculating the solute 

term in the structural fitting analysis (see Fig. 1b). The cage term was calculated with the aid 

of MD simulations, and the solvent term was experimentally acquired in a separate 

experiment with a heating dye (4-bromo-4′-(N,N-diethylamino)-azobenzene) in methanol 

solution (see Methods and Supplementary Fig. 5 for details). We note that only theoretical 

ΔSiso were considered for the structural fitting analysis since the contribution of ΔSaniso is 

negligible at 100 ps as the rotational dephasing processes are completed before 100 ps, as can 

be seen in Supplementary Fig. 2. 

The structural fitting analysis was performed by optimizing structural parameters of 

I3
- (bond lengths of IA-IB (RAB) and IB-IC (RBC), and IA-IB-IC angle (θ)) and I2

- (the I-I bond 

length (R(I2
-)), where the three iodine atoms of I3

- are labeled as IA, IB, and IC, respectively, as 

depicted in Fig. 1a. The cage terms were prepared before the structural fitting analysis for 

specific molecular geometries and charge distributions. Here, the basic strategy of the 

structural fitting analysis is to perform the analysis iteratively until the solute structures to be 

optimized through the fitting process, and the structures used to precalculate the cage term 

become self-consistent. Initially, a cage term of I3
- was calculated by an MD simulation 

performed against the symmetric linear structure (RAB = RBC = 2.95 Å, θ = 180˚) and 

symmetric charge distribution ((IA, IB, IC) = (-0.5 e, 0 e, -0.5 e)), which is the optimized 

values from a density functional theory (DFT) calculation on I3
- (see the section “Density 

functional theory calculation” in Methods for the details on the DFT calculation). The cage 

term of I2
- for the analysis was initially determined using the structure calculated from a DFT 

calculation (R(I2
-) = 3.23 Å). Throughout the entire analysis, we used an atomic charge of -

0.5 e for two iodine atoms of I2
- since it is evident that the negative charge is equally 

distributed to the two iodine atoms. Then, the structural fitting analysis was performed using 



S8 

 

these cage terms by optimizing the structures of I3
- and I2

-. The structure of I3
- resulting from 

the initial structural fitting has an asymmetric bent structure (RAB = 3.14 ± 0.01 Å, RBC = 2.92 

± 0.01 Å, θ = 151.2 ± 0.3˚). The structure of I2
- was determined to be R(I2

-) = 3.28 ± 0.01 Å. 

These resulting structures of I3
- and I2

- are not self-consistent with the structure used for the 

calculation of the cage term. Moreover, the asymmetric bent structure of I3
- raises the 

possibility that the one quantum of the negative charge is asymmetrically distributed over 

three iodine atoms, unlike the symmetric linear structure, where the charge should be 

symmetrically distributed.  

Therefore, we pursued further refining the structure and atomic charge distribution of 

I3
- based on the TRXL data. Before performing the structural fitting analysis again, we 

checked the sensitivity of the difference scattering curve on the structure and charge 

distribution of I3
- by comparing cage terms calculated for several molecular geometries and 

charge distributions, as shown in Supplementary Fig. 4. Supplementary Fig. 4a-c, show 

simulated MD snapshots of I3
- and solute-solvent pair distribution functions (PDFs) obtained 

for three representative combinations of different geometries and charge distributions. 

Supplementary Fig. 4a shows simulated results for the linear symmetric structure (RAB = RBC 

= 2.95 Å, θ = 180˚) and the symmetric charge distribution ((IA, IB, IC) = (-0.5 e, 0 e, -0.5 e)) 

of I3
-, which is obtained from the DFT calculation. In the cases shown in Supplementary Fig. 

4b, c, I3
- have significantly different charge distributions, a symmetric charge distribution ((IA, 

IB, IC) = (-0.5 e, 0 e, -0.5 e)) and an asymmetric charge distribution ((IA, IB, IC) = (0 e, 0 e, -

1.0 e)), respectively, with the asymmetric bent structure of I3
- (RAB = 3.14 Å, RBC = 2.92 Å, θ 

= 151.2˚) determined the previous structural fitting analysis. As can be seen from the PDFs 

for the three cases in Supplementary Fig. 4a-c, a PDF is more sensitive to the atomic charge 

distribution than to the molecular geometry of I3
-. The cage terms calculated for the three 

cases are distinguishable from each other, as shown in Supplementary Fig. 4d. The simulation 
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results infer that the charge distribution affects both the solvent arrangement around the 

solute and accordingly alters the cage term in the TRXL signal, demonstrating the possibility 

of determining the charge distribution from the TRXL data based on the change of the cage 

term.  

To consider the atomic charge distribution of I3
-, new cage terms were generated by 

running MD simulations with the asymmetric bent I3
 that have various charge distributions. 

Because MD simulations are slow processes, they could not be simply implemented into a 

maximum likelihood fitting procedure. To cope with this situation, we conducted grid search 

procedures by generating grid points of all possible atomic charge distributions. Generally, a 

typical driving force for uneven charge distribution comes from the difference in 

electronegativities. Since I3
- is made of a single kind of atoms, three iodines, and the overall 

charge of I3
- is -1, that is 1 e-, it would be unlikely that any positive atomic charges are 

generated. Furthermore, previous theoretical studies using ab initio MD and CASSCF 

reported that no positive partial charge occurs on any iodine atom of I3
- in various solvents 

unless the molecular geometry is significantly different from the equilibrium structure5,6. For 

that reason, we considered only negative atomic charges ranging from 0 to 1 e-, so that we 

generated 66 grid points in total with a grid point representing a possible combination of 

three atomic charges as shown in Fig. 2a and Supplementary Fig. 5. For each grid point, 

which is a given charge distribution, we ran an MD simulation to obtain the corresponding 

cage term while the asymmetric bent structure of I3
- determined from the initial structure 

fitting was used. Details on the MD simulations are described in Methods. Once all cage 

terms for all grid points were ready, we performed a fitting procedure for each grid point that 

refines the solute structures. Subsequently, we performed an additional optimization of the 

cage term and solute structures to attain self-consistency. Cage terms were calculated again 

using the refined structures of I3
- and I2

- determined in the previous fitting procedure for all 
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the grid points. Finally, using the refined cage terms, the solute structures were further 

optimized via structural fittings for the grid points. The detailed procedure of the grid search 

is depicted in Supplementary Fig. 5. A plot of the weighted R-factors (wR) for all grid points 

(that is, a grid map) shown in Fig. 2a visualizes which grid point has the minimum wR7,8. 

According to the grid search results, the charge distribution of (IA, IB, IC) = (-0.9 e, 0.0 e, -0.1 

e) with an asymmetric bent structure (RAB = 3.09 ± 0.01 Å, RBC = 2.96 ± 0.01 Å and θ = 152 

± 0.4˚) yielded the smallest wR. More details of the resulting fitting parameters are 

summarized in Supplementary Table 1. The optimized atomic charge distribution indicates 

that the negative charge is asymmetrically located in I3
-. Specifically, most of the negative 

charge is localized on the terminal I atom (IA) forming the longer I-I bond (IA-IB) in the 

ground state. We further inspected how the TRXL signal is altered depending on atomic 

charge distributions by comparing the fitting qualities at three representative grid points 

where most of the negative charge is localized on (i) IA or (ii) IB or (iii) equally distributed to 

IA and IC, as shown in Fig. 2c. The comparison reveals that the various charge distributions 

are distinguishable from the TRXL data and the different charge distributions predominantly 

affect the TRXL signal in a small-angle region (q < 3 Å-1), demonstrating that the employed 

analysis for calculating cage terms considering both the molecular geometry and charge 

distribution has provided the quantitative determination of the atomic charge distribution. We 

also checked the possibility of overfitting and model bias by removing randomly chosen 10% 

of the data points, fitting only the remaining 90% of the data, and checking the weighted R-

free factors (wRfree). The wRfree (0.0683) is not significantly larger than the wR (0.0681), 

indicating that the obtained fit result did not suffer from overfitting or bias. Moreover, 

another evidence supporting this finding is provided by considering the rotational dynamics, 

which turn out to depend on the charge distribution (Fig. 2d), as discussed in the main text. 
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4. Singular value decomposition  

To investigate the time-dependent features in the experimental data of I3
-, we applied the 

singular value decomposition (SVD) analysis to the measured isotropic and anisotropic 

TRXL data. For the SVD analysis, we built an n𝑞 × n𝑡  data matrix, 𝐀 , whose column 

vectors are experimental time-resolved difference scattering curves, where n𝑞 is the number 

of q points in the difference scattering curves and n𝑡 is the number of time-delay points. As a 

result of SVD, the matrix 𝐀 is decomposed into three matrices satisfying the relationship of 

𝐀 = 𝐔𝐒𝐕T. 𝐔 is an n𝑞 × n𝑡  matrix whose column vectors are called left singular vectors 

(lSVs) of 𝐀, 𝐕 is an n𝑡 × n𝑡 matrix whose column vectors are called right singular vectors 

(rSVs) of 𝐀, and 𝐒 is a diagonal n𝑡 × n𝑡 matrix whose diagonal elements are called singular 

values of 𝐀. The matrices 𝐔 and 𝐕 follow the relationships of 𝐔T𝐔 = 𝐈𝒏𝒕  and 𝐕T𝐕 = 𝐈𝒏𝒕, 

respectively, where 𝐈𝒏𝒕  is an identity matrix. The lSVs represent time-independent q-spectra, 

the rSVs represent time-dependent amplitude changes of corresponding lSVs, and the 

singular values represent the weights of the corresponding lSVs and rSVs. Since the singular 

values are ordered so that s1 ≥ s2 ≥ ⋯ ≥ s𝑛 ≥ 0 , (both left and right) singular vectors on 

more left are supposed to have larger contributions to the experimental data matrix 𝐀. The 

results of SVD on of the isotropic and anisotropic qΔS(q,t) are summarized in Supplementary 

Fig. 12. We used the SVD results to construct the proper fitting model for the scattering data. 

Because SVD extracts the feature and time-dependent character of the scattering components, 

we can quantify the main contributors to the dynamics and the corresponding time constants. 

Also, we applied SVD to the anisotropic heating signal to obtain the contribution of the Kerr 

effect of solvent molecules, which was used for the structural analysis. More details are 

described in the section “5. Structural analysis on ΔSiso and ΔSaniso (q, t > 300 fs)”.  
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5. Structural analysis on ΔSiso and ΔSaniso (q, t > 300 fs) 

The difference scattering curves can be described by a sum of three terms: (i) the solute term, 

(ii) the solvent term, and (iii) the cage term (solute-solvent cross term)9. For the structural 

fitting analysis, we adjusted several parameters related to those contributing terms in TRXL 

data by minimizing the discrepancy between the theoretical and experimental data. To 

quantify the agreement between the calculated and experimental difference scattering curves, 

we calculated the weighted R-factor (wR) using the following equation. 

wR(𝑡)

=  

√
  
  
  
  
  

∑
(Δ𝑆𝑡ℎ𝑒𝑜𝑟𝑦,𝑖𝑠𝑜(𝑞𝑖, 𝑡) − ΔSiso(𝑞𝑖, 𝑡))

2

(𝜎iso(𝑞𝑖, 𝑡))2
𝑖 + ∑

(Δ𝑆𝑡ℎ𝑒𝑜𝑟𝑦,𝑎𝑛𝑖𝑠𝑜(𝑞𝑖, 𝑡) − ΔSaniso(𝑞𝑖, 𝑡))
2

(𝜎aniso(𝑞𝑖, 𝑡))2
𝑖

∑
(ΔSiso(𝑞𝑖, 𝑡))

2

(𝜎iso(𝑞𝑖, 𝑡))2
𝑖 + ∑

(ΔSaniso(𝑞𝑖, 𝑡))
2

(𝜎aniso(𝑞𝑖, 𝑡))2
𝑖

 

(S1) 

In the equation, ΔSiso and ΔSaniso stand for the experimentally measured isotropic and 

anisotropic difference scattering signals. ΔStheory,iso and ΔStheory,aniso are the theoretical 

difference scattering curves calculated during the fitting processes, and σiso and σaniso are the 

standard errors of ΔSiso and ΔSaniso, respectively. The minimization of the wR was performed 

to refine the molecular structure using the MINUIT package written at CERN and the error 

analysis was performed by MINOS, a built-in algorithm in the MINUIT software10. Structural 

and anisotropic parameters were optimized by minimizing the wR. The structure of ground 

state I3
- was fixed to that determined from the analysis of the 100-ps data. The fitting process 

was conducted for each time delay by constructing the theoretical difference scattering curves 

calculated using the following equations.  

Δ𝑆𝑡ℎ𝑒𝑜𝑟𝑦,𝑖𝑠𝑜(𝑞, 𝑡) = 𝐵0(𝑡) ∗ (𝑆𝑒,𝑖𝑠𝑜(𝑞, 𝑡) − 𝑆𝑔,𝑖𝑠𝑜(𝑞, 𝑡)) + 𝐵1(𝑡) ∗
𝜕𝑆(𝑞)

𝜕𝑇
|
𝜌
  (S2) 

Δ𝑆𝑡ℎ𝑒𝑜𝑟𝑦,𝑎𝑛𝑖𝑠𝑜(𝑞, 𝑡) = 𝐵0(𝑡) ∗ (𝐴𝑒(𝑡) ∗ 𝑆𝑒,𝑎𝑛𝑖𝑠𝑜(𝑞, 𝑡) − 𝐴𝑔(𝑡) ∗ 𝑆𝑔,𝑎𝑛𝑖𝑠𝑜(𝑞, 𝑡)) + 𝐵2(𝑡) ∗ Δ𝑆𝐾𝑒𝑟𝑟  
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(S3) 

Se,iso and Sg,iso are the theoretical isotropic scattering curves of the products (I2
- 

and I) and the reactant (I3
-), respectively. Se,aniso and Sg,aniso are the theoretical anisotropic 

scattering curves of I2
- and I3

-. These scattering curves, Se,iso, Sg,iso, Se,aniso, and Sg,aniso are 

composed of the solute term and the cage term. 
𝜕𝑆(𝑞)

𝜕𝑇
|
𝜌

 is the experimentally measured 

temperature solvent differential using a heating dye11-13. To obtain 
𝜕𝑆(𝑞)

𝜕𝑇
|
𝜌

 and ΔSKerr, 

we measured TRXL data of a heating dye as described in the section “1. TRXL 

experiments” and extracted isotropic and anisotropic heating signals (ΔSheat,iso and 

ΔSheat,aniso) as shown in Supplementary Figs. 13a and 13b, respectively. The isotropic 

heating signal at 100 ps shown in Supplementary Fig. 13c was used as 
𝜕𝑆(𝑞)

𝜕𝑇
|
𝜌

. ΔSKerr is 

the anisotropic signal that originates from the Kerr effect of solvent molecules. To obtain 

ΔSKerr, we performed SVD analysis on the anisotropic heating signal (ΔSheat,aniso) shown 

in Supplementary Fig. 13b, and the 1st lSV shown in Supplementary Fig. 13d was used 

as ΔSKerr (The procedures for SVD analysis are detailed in the section “4. Singular value 

decomposition”). These experimentally measured signal using the heating dye, 
𝜕𝑆(𝑞)

𝜕𝑇
|
𝜌

 

and ΔSKerr, are shown in Supplementary Fig. 13. B0(t), B1(t) and B2(t) reflect the 

population dynamics of I2
-, and the intensity of the solvent heating signal, and the 

intensity of the solvent Kerr signal, respectively. Ae(t) and Ag(t) are the anisotropy 

coefficients of I2
- and I3

-, respectively, and describe the anisotropy change of each 

molecule. Especially Ag, which shows anisotropy change of I3
-, represents the anisotropy 

originating from the hole of depleted I3
-. The fitted results are presented in Figs. 4 and 5. 

The isotropic scattering curves were calculated with the Debye equation9, and the 

anisotropic scattering curves were calculated under the assumption of single-photon 
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excitation by which the anisotropic distribution of the excited molecules has cos2𝜙 

distribution along with the pump beam polarization2.  

To calculate Se,iso and Sg,iso in Eq. (S2), the theoretical isotropic scattering curves, Siso, 

were calculated as follows: 

𝑆𝑖𝑠𝑜(𝑞, 𝑡) = ∑ ∑ 𝑓𝑛(𝑞)𝑓𝑚(𝑞)
sin𝑞𝑟𝑛𝑚(𝑡)

𝑞𝑟𝑛𝑚(𝑡)
𝑚𝑛 + 𝑆𝑖𝑠𝑜,𝑐𝑎𝑔𝑒   (S4) 

, where fn and fm are the x-ray form factors of atoms n and m in the molecule, rnm is the 

interatomic distance between atoms n and m, and Siso,cage is the isotropic cage term, which can 

be calculated from the MD simulation. The theoretical isotropic scattering curves were 

calculated for the products (I2
- and I) and the reactant (I3

-) using Eq. (S4), yielding Se,iso and 

Sg,iso, respectively. 

To calculate Se,aniso and Sg,aniso in Eq. (S3), the theoretical anisotropic scattering 

curves, Saniso, were calculated as follows: 

𝑆𝑎𝑛𝑖𝑠𝑜(𝑞, 𝑡) = −∑ ∑ 𝑓𝑛(𝑞)𝑓𝑚(𝑞)𝑃2[cos 𝜉𝑛𝑚(𝑡)]𝑗2[𝑞𝑟𝑛𝑚(𝑡)]𝑚  𝑛 + 𝑆𝑎𝑛𝑖𝑠𝑜,𝑐𝑎𝑔𝑒   (S5) 

, where P2 is the second-order Legendre polynomial, 𝜉nm is the angle between rnm and the 

laser polarization axis, j2 is the second-order Bessel function, and Saniso,cage is the anisotropic 

cage term, which was obtained following the procedures detailed in the section “7. 

Anisotropic cage term”. The theoretical anisotropic scattering curves were calculated for the 

products (I2
- and I) and the reactant (I3

-) using Eq. (S5), yielding Se,aniso and Sg,aniso, 

respectively. 

In the fitting analysis, we constructed the theoretical isotropic and anisotropic 

scattering curves following Eqs. (S2) – (S5), and minimized the wR given by Eq. (S1), to 

achieve satisfactory fits to the experimental data. For the fitting, we optimized several 

structural parameters such as the I-I bond length (R(I2
-)), the distance between the I radical 

and the center of I2
- (r(I-I2-)), the root-mean-square displacement of the Debye-Waller factor 
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(DWF) for r(I-I2
-) (σ) were used as fitting parameters. Here, we introduced the DWF (exp(-

σ2q2/2)) to describe the relatively free movement of the escaping I radical, yielding a broad 

distribution of the interatomic distance between the I radical and the center of I2
-. We note 

that for a typical analysis of TRXL data, it is sufficient to use DWF of 1 (that is, σ = 0) unless 

an interatomic distance has an unusually broad distribution. When including the DWF, the 

theoretical scattering curves in Eqs. (S4) and (S5) are modified as follows: 

𝑆𝑖𝑠𝑜(𝑞, 𝑡) = ∑ ∑ 𝑓𝑛(𝑞)𝑓𝑚(𝑞)
sin𝑞𝑟𝑛𝑚(𝑡)

𝑞𝑟𝑛𝑚(𝑡)
𝑒(

−𝜎𝑛𝑚
2 𝑞2

2
)

𝑚𝑛 + 𝑆𝑖𝑠𝑜,𝑐𝑎𝑔𝑒  (S6) 

𝑆𝑎𝑛𝑖𝑠𝑜(𝑞, 𝑡) = −∑ ∑ 𝑓𝑛(𝑞)𝑓𝑚(𝑞)𝑃2[cos 𝜉𝑛𝑚(𝑡)]𝑗2[𝑞𝑟𝑛𝑚(𝑡)]𝑒
(
−𝜎𝑛𝑚

2 𝑞2

2
)

𝑚  𝑛 + 𝑆𝑎𝑛𝑖𝑠𝑜,𝑐𝑎𝑔𝑒 (S7) 

In summary, for the structural analysis on ΔSiso and ΔSaniso (q, t > 300 fs), R(I2
-), r(I-

I2
-), σ, Ae(t), Ag(t), B0(t), B1(t) and B2(t) were used as the time-dependent fitting parameters. 

Among these parameters, R(I2
-), r(I-I2

-) and B0(t) were used for both isotropic and anisotropic 

fitting processes, σ and B1(t) were used for the isotropic curve fitting, and the others, Ae(t), 

Ag(t), and B2(t) were used to fit the anisotropic data. 

Because there is no anisotropic signal at 100 ps, anisotropic terms are not considered 

for the refinement of the charge distribution of I3
- and structure of I2

- and I3
-. For the 

refinement process of the 100-ps data, we also randomly chose 10% of the overall data and 

used the other 90% for the fitting process. Then the wR for the 10% data was used to 

calculate the weighted R-free factor (wRfree), whereas 90% of the data the wR. The wRfree 

was compared with the corresponding wR to check for any overfitting or bias. 

We note that we used a static cage term, which was calculated from the cage 

structure that is obtained from the equilibrium MD simulation of the solute molecule having 

fixed molecular geometry and charge distribution, for each chemical species of I3
-, I2

- and I. 

An example for I3
- → I2

- + I is shown in Supplementary Fig. 16. In fact, it is known that the 

cage structure around a solute during a reaction is not static but dynamic. There are two 
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dynamic aspects to be considered. The first is that the structure of solute, for example, I2
-, is 

not static but dynamic: at early time delays, I2
- adapts non-equilibrium structure, which is 

slowly relaxed to the equilibrium structure along with the vibrational relaxation. In this 

process, the cage structure around I2
- may dynamically adapt to the structural relaxation of I2

-. 

For example, the cage structure for the vibrationally excited I2
- (R(I2

-) = 3.34 Å  at t = 0.7 ps) 

would in principle be different from that for the I2
- in equilibrium (R(I2

-) = 3.25 Å ). 

Nevertheless, according to our simulation, as shown in Supplementary Fig. 16, such an 

adaptation of the cage structure around the relaxing I2
- molecule does not have a significant 

contribution to the TRXL signal, indicating that such a dynamic cage structure around I2
- is 

negligible in our analysis.  

In addition to this, the potential contribution of solvation dynamics, the non-

equilibrium cage structure, should also be taken into account. To check whether the 

contribution of the solvation dynamics is evident in our TRXL data, we compared two 

different models, (i) a non-equilibrium cage model with the assumption that, at the earliest 

time delays, the cage has not yet fully adapted to the rapid change in molecular structures and 

charge distribution accompanying the reaction I3
- → I2

- + I so that the structure of the cage 

would be much more similar to that of the parent molecule, I3
-, than that of the products, I2

- 

and I, and (ii) an equilibrium cage model with the assumption that, even at the earliest time 

delays, the cage has already been fully adapted to the rapid change so that the structure of the 

cage is similar to that of the products, I2
- and I. While the former model assumes that the 

solvation dynamics is relatively slow so that it can be captured with the IRF of the current 

TRXL experiment, the latter model assumes that the solvation dynamics is too fast to be 

captured with the IRF of the current experiment. For the former model, the cage term was 

calculated with an approximation that in the non-equilibrium cage structure, only the 

structure of the solute molecule is changed while the positions and orientations of 
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surrounding solvent molecules are retained as the same as those in the equilibrium ground 

state. Following this approximation, the non-equilibrium cage structure was obtained simply 

by replacing I3
- in the equilibrium MD snapshots of I3

- with the solute molecule in the excited 

state while retaining the surrounding solvent molecules. Comparison of the goodness of fit 

for the two different cage models shows that the quality of the fit is not better, and even 

worse, for the non-equilibrium cage model (see Supplementary Fig. 17). It was reported from 

literature that the solvation dynamics of dye molecules in methanol shows three time 

constants: ~100 fs, 1.1 ps, and 10 ps14. We suggest that the current TRXL data could not 

capture the signal corresponding to the solvation dynamics probably because most of the 

structural relaxation of the cage is finished with the 100 fs time constant, which is too fast to 

be captured with the IRF of our experiment, 300 fs. Also, the solvation dynamics associated 

with the other two time constants were not observed in our TRXL data, implying that the 

structural change occurring with the two time constants of 1.1 ps and 10 ps would be much 

smaller. Accordingly, we used the time-independent, equilibrium cage model to describe the 

cage structure of solute molecules throughout the fitting process. 

 

6. Structural analysis on ΔSiso and ΔSaniso (q, t ≤ 300 fs)  

For the structural analysis on the experimental curves within the experimental IRF (t ≤ 300 

fs), we considered the convolution of the molecular response with the IRF instead of 

performing the structural analysis on the individual experimental curves. Thus, an approach 

to fit the experimental curves within the experimental IRF (t ≤ 300 fs) was slightly modified 

from that used for the time delays larger than the experimental IRF, following the previously 

reported procedures15. The time-dependent parameters for the structures of I2
- and the 

dissociating I radical, σ of the DWF, anisotropy coefficients (Ae(t), and Ag(t)) and the 

population of I2
- (B0(t)) were modeled by a quartic polynomial function. 
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x(t) =  ∑ 𝑎4−𝑘𝑡
4−𝑘4

𝑘=0   (S8) 

, where a4-k is the coefficient of the polynomial function. The isotropic and anisotropic 

scattering curves for the solute signal in Sinst,iso(q, t), Sinst,aniso(q, t) were calculated based on 

x(t) from which the molecular structures were constructed and the DWF for the dissociating 

I3
- was calculated. Subsequently, the instantaneous theoretical difference scattering curves, 

ΔSinst(q, t), were calculated using the following equations: 

ΔS𝑖𝑛𝑠𝑡,𝑖𝑠𝑜(𝑞, 𝑡) = 𝐵0(𝑡) ∗ [𝑆𝑒,𝑖𝑠𝑜(𝑞, 𝑡) − 𝑆𝑔,𝑖𝑠𝑜(𝑞)] + 𝐵1(𝑡) ∗
𝜕𝑆(𝑞)

𝜕𝑇
|
𝜌

  (S9) 

ΔS𝑖𝑛𝑠𝑡,𝑎𝑛𝑖𝑠𝑜(𝑞, 𝑡) = 𝐵0(𝑡) ∗ [𝑆𝑒,𝑎𝑛𝑖𝑠𝑜(𝑞, 𝑡)𝐴𝑒(𝑡) − 𝑆𝑔,𝑎𝑛𝑖𝑠𝑜(𝑞)𝐴𝑔(𝑡)] + 𝐵2(𝑡) ∗ Δ𝑆𝐾𝑒𝑟𝑟   (S10) 

, where the terms in Eqs. (S9) and (S10) are the same as those in Eqs. (S2) and (S3). The 

fractions of the heating (B1(t)) and Kerr (B2(t)) signals were determined with the SANOD 

during the fitting process minimizing the residual of the fit16. B0(t), Ae(t), and Ag(t) were also 

modeled using quadratic polynomial functions shown in Eq. (S8) and the coefficients of the 

polynomial functions were used as fitting parameters. Then, ΔSinst,iso(q, t) and ΔSinst,aniso(q, t) 

were convoluted by the experimental IRF, IRF(t), with a full width at half-maximum (FWHM) 

of 270 fs. The experimental IRF was determined from the fitting of rSVs (Supplementary Fig. 

12). The convolution resulted in ΔStheory,iso(q, t ≤ 300 fs) and ΔStheory,aniso(q, t ≤ 300 fs) as 

shown in the following equations. 

ΔS𝑡ℎ𝑒𝑜𝑟𝑦,𝑖𝑠𝑜(𝑞, 𝑡 ≤ 300 𝑓𝑠) = Δ𝑆𝑖𝑛𝑠𝑡,𝑖𝑠𝑜(𝑞, 𝑡) ⨂ 𝐼𝑅𝐹(𝑡)  (S11) 

ΔS𝑡ℎ𝑒𝑜𝑟𝑦,𝑎𝑛𝑖𝑠𝑜(𝑞, 𝑡 ≤ 300 𝑓𝑠) = Δ𝑆𝑖𝑛𝑠𝑡,𝑎𝑛𝑖𝑠𝑜(𝑞, 𝑡) ⨂ 𝐼𝑅𝐹(𝑡)  (S12) 

Under the constraints where the polynomial functions smoothly connect the structure at 0 fs, 

which is the structure of the I2
- at Frank-Condon region, and the structures at 300 fs 

determined following the procedures described in “Structural analysis on ΔSiso and ΔSaniso (q, 

t > 300 fs)” of Supplementary Information, the coefficients of the polynomial functions for 

each structural parameter were optimized by minimizing the wR using the following equation: 
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wR =  

√
  
  
  
  
  
∑ ∑  [

(Δ𝑆𝑡ℎ𝑒𝑜𝑟𝑦,𝑖𝑠𝑜(𝑞𝑖,𝑡𝑗) − ΔSiso(𝑞𝑖,𝑡𝑗))
2

(𝜎iso(𝑞𝑖,𝑡𝑗))
2  + 

(Δ𝑆𝑡ℎ𝑒𝑜𝑟𝑦,𝑎𝑛𝑖𝑠𝑜(𝑞𝑖,𝑡𝑗) − ΔSaniso(𝑞𝑖,𝑡𝑗))
2

(𝜎aniso(𝑞𝑖,𝑡𝑗))
2 ]𝑖𝑗=𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦

∑ ∑  [
(ΔSiso(𝑞𝑖,𝑡𝑗))

2
 

(𝜎iso(𝑞𝑖,𝑡𝑗))
2 + 

 (ΔSaniso(𝑞𝑖,𝑡𝑗))
2

(𝜎aniso(𝑞𝑖,𝑡𝑗))
2 ]𝑖𝑗=𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦

  (S13) 

, where σiso and σaniso is the standard deviation of the isotropic and anisotropic difference 

scattering intensity at each q and t. Finally, the resultant ΔStheory,iso(q, t ≤ 300 fs) and 

ΔStheory,aniso(q, t ≤ 300 fs) were concatenated with ΔStheory,iso(q, t > 300 fs) and ΔStheory,aniso(q, t 

> 300 fs), respectably, giving rise to ΔStheory,iso and ΔStheory,aniso shown in Figs. 4a and 5a. The 

optimized x(t) values were concatenated with the corresponding parameters used to calculate 

the solute signal of ΔStheory,iso(q, t > 300 fs) and ΔStheory,aniso(q, t > 300 fs) and are represented 

in Figs. 4b, 4c, 5b and 5c. The standard deviations for the structural parameters and σ of the 

DWF at t ≤ 300 fs were calculated based on the covariance matrix, which was calculated 

during the fit of the coefficients of quartic polynomials using the following equation: 

σ𝑥(𝑡) = √∑(𝑡4−𝑘)2𝑉𝑎𝑟(𝑎4−𝑘)

4

𝑘=0

+ 2∑ ∑ 𝑡4−𝑖𝑡4−𝑗𝐶𝑜𝑣(𝑎4−𝑖, 𝑎4−𝑗)

4

𝑗=𝑖+1

4

𝑖=0

 

(S14) 

, where σx(t) is the standard deviation of the parameter x at time delay t, Var(a4₋k) is the 

variance of the coefficient a4₋k, and Cov(a4₋i, a4₋j) is the covariance between the coefficients 

a4₋i and a4₋j. 

In summary, for the structural analysis on ΔSiso and ΔSaniso (q, t ≤ 300 fs), R(I2
-), r(I-

I2
-), σ, Ae(t), Ag(t), and B0(t) were used as the time-dependent fitting parameters. Among 

these parameters, R(I2
-), r(I-I2

-) and B0(t) were used for both isotropic and anisotropic fitting 

processes, σ was used for the isotropic curve fitting, and the others, Ae(t), and Ag(t) were used 

to fit the anisotropic data. 
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7. Anisotropic cage term 

The change of solute structure is accompanied by the change of cage structure around 

the solute molecule. The cage term for the randomly oriented case can be calculated using the 

pair distribution functions (PDFs) for the cross pairs of an atom of a solute molecule and an 

atom of the solvent molecule. If solute molecules are isotropically oriented, the cage term can 

be calculated with the following isotropic scattering equation9:  

𝑆𝑐𝑎𝑔𝑒(𝑞) = 2 ∗∑∑𝑓𝑗(𝑞)𝑓𝑘(𝑞) 𝑛𝑘∫4πr2(𝑔𝑗𝑘(𝑟) − 1)
sin 𝑞𝑟

𝑞𝑟
𝑘

𝑑𝑟

𝑗

 

 (S15) 

, where j is the index of an atom in the solute molecule; k is the index of an atom in the 

solvent molecule; nk stands for the number density of atom k, and gjk means the PDF of the 

atomic pair j and k; q is the absolute value of the momentum transfer vector; and r is the 

distance between atom j and atom k; fj(q) and fk(q) are the atomic form factor of atom j and 

atom k for q. Eq. (S15) cannot be used to calculate the anisotropic cage term, which requires 

the consideration for the anisotropic environment around the solute molecule. We have 

developed a methodology to calculate the anisotropic cage term for any desired distribution 

of the solute molecules, as explained in the following. First, we will explain it for the 

scattering from a single solute molecule embedded in solvent molecules and then expand it to 

the case with the ensemble with angular distribution induced by the photoselection. Eq. (S15) 

is not adequate for the calculation of any anisotropic term because 𝑔𝑗𝑘(𝑟) in Eq. (S15) does 

not contain orientational information around a solute molecule. Therefore, we started from 

the following generalized equation from which Eq. (S15) is derived for the special case of 

randomly oriented molecules17: 

𝑆(�⃗⃗� ) = ∑ ∑ 𝑓𝑛(|�⃗⃗� |)𝑓𝑛′(|�⃗⃗� |)𝑛′  𝑐𝑜𝑠(𝒒 ⃗⃗  ⃗ ∙ 𝒓𝒏𝒏′⃗⃗ ⃗⃗ ⃗⃗⃗⃗ )𝑛    (S16) 

, where �⃗⃗�  is the momentum transfer vector, and 𝒓𝒏𝒏′⃗⃗ ⃗⃗ ⃗⃗⃗⃗  stands for the displacement vector 
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between atom n and atom n’. From this equation, we can construct the following generalized 

equation for calculating the cage term applicable to arbitrarily oriented cases:  

𝑆𝑐𝑎𝑔𝑒(�⃗⃗� ) = 2 ∗∑∑𝑓𝑗(|�⃗⃗� |)𝑓𝑘(|�⃗⃗� |) 𝑛𝑘
𝑘

∭ 𝑟2(𝑔𝑗𝑘(𝑟, 𝜙, 𝜃) − 1) 𝑐𝑜𝑠(𝒒 ⃗⃗  ⃗ ∙ �⃗� )  
 

𝑟,𝜙,𝜃

 𝑑𝑟 𝑑𝜙 𝑑𝜃

𝑗

 

 (S17)  

, where 𝑟, 𝜙, and 𝜃 are the spherical coordinates of the displacement vector, �⃗� , and stand for 

a radial distance, a polar angle, and an azimuthal angle, respectively; 𝑔𝑗𝑘(𝑟, 𝜙, 𝜃) is the 

spatial distribution function (SDF). Note that a PDF is a function of r, and an SDF is a 

function of �⃗� . One drawback with Eq. (S17) is that it requires the calculation of 𝑔𝑗𝑘(𝑟, 𝜙, 𝜃), 

which takes too much workforce. For this reason, we further modified Eq. (S17) by replacing 

𝑔𝑗𝑘(𝑟, 𝜙, 𝜃)  with an orientation-dependent PDF, 𝑔𝑗𝑘(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗)  so that the cage term from 

explicit solute and solvent molecules in an MD snapshot can be easily calculated, as detailed 

below. First, we defined unit angular vectors (𝒗𝒎⃗⃗ ⃗⃗  ⃗), which point evenly spaced spherical 

coordinates on the unit sphere using the spiral methods18. This unit angular vectors can be 

written as, 

𝜃𝑚 = √𝜋𝑁 sin−1(
2𝑚−1−𝑁

𝑁
)  (S18-1) 

𝜙𝑚 = cos−1(
2𝑚−1−𝑁

𝑁
)  (S18-2) 

𝒗𝒎⃗⃗ ⃗⃗  ⃗ = [cos 𝜃𝑚 sin𝜙𝑚 , sin 𝜃𝑚 sin𝜙𝑚 , cos𝜙𝑚]  (S18-3) 

, where N is the total number of unit angular vectors, and m = 1,2, …, N, and 𝜃𝑚 and 𝜙𝑚 are 

the azimuthal and polar angles of the m-th unit angular vector, respectively. The N of 1,500 

was used for the calculation. Each dot in Supplementary Fig. 6a represents each unit angular 

vector that spans the surface of the unit sphere in 3D space. A unit angular vector indicates 

the direction of the corresponding orientation-dependent PDF to construct, 𝑔𝑗𝑘(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗). For 

constructing 𝑔𝑗𝑘(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗), we first expanded the unit sphere so that the expanded sphere can 
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contain the whole MD box used for an MD simulation. An expanded sphere with a radius of 

20 Å satisfied this condition (Supplementary Fig. 7a). Then, the expanded sphere around the 

solute molecule is divided into polyhedral cones with uniform solid angles so that each 

polyhedral cone has a height of 20 Å, as illustrated in Supplementary Fig. 6b. To calculate the 

orientation-dependent PDF, 𝑔𝑗𝑘(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗), we identified the desired atoms (for example, k) of 

solvent molecules within the polyhedral cone of the expanded sphere and calculated the PDF 

for the cross pair of an atom of a solute molecule (for example, j) and the selected solvent 

atoms within each polyhedral cone specified by 𝒗𝒎⃗⃗ ⃗⃗  ⃗. The cage signal corresponding to the 

orientation-dependent PDF is given by the following equation. 

𝑆𝑐𝑎𝑔𝑒(�⃗⃗� , 𝒗𝒎⃗⃗ ⃗⃗  ⃗) = 2 ∗∑∑𝑓𝑗(|�⃗⃗� |)𝑓𝑘(|�⃗⃗� |)𝑛𝑘∫
4𝜋𝑟2

𝑁
(𝑔𝑗𝑘(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗) − 1) 𝑐𝑜𝑠(𝑟𝒒 ⃗⃗  ⃗ ∙ 𝒗𝒎⃗⃗ ⃗⃗  ⃗)

𝑘

𝑑𝑟

𝑗

 

 (S19) 

Then, the cage signal for a single solute molecule embedded in solvent molecules is 

calculated by summing all 𝑆𝑐𝑎𝑔𝑒(�⃗⃗� , 𝒗𝒎⃗⃗ ⃗⃗  ⃗), as follows. 

𝑆𝑐𝑎𝑔𝑒(�⃗⃗� ) = ∑ 𝑆𝑐𝑎𝑔𝑒(�⃗⃗� , 𝒗𝒎⃗⃗ ⃗⃗  ⃗)

𝑁

𝑚=1

= 2 ∗∑∑∑𝑓𝑗(|�⃗⃗� |)𝑓𝑘(|�⃗⃗� |)𝑛𝑘∫
4𝜋𝑟2

𝑁
(𝑔𝑗𝑘(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗) − 1) 𝑐𝑜𝑠(𝑟𝒒 ⃗⃗  ⃗ ∙ 𝒗𝒎⃗⃗ ⃗⃗  ⃗)

𝑘

𝑑𝑟

𝑗

𝑁

𝑚

 

 (S20) 

The resulting Eq. (S20) is equivalent to Eq. (S17), except that it is modified by 

decomposing the SDF, 𝑔𝑗𝑘(𝑟, 𝜙, 𝜃), to orientation-dependent PDFs, 𝑔𝑗𝑘(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗), to reduce 

the complicity that arises from calculating the SDF. Finally, using Eq. (S20), it is possible to 

calculate the scattering pattern from the solute-solvent pair for a solute molecule with any 

orientation. Generally, a single MD snapshot cannot give a satisfactory cage signal due to the 

insufficient sampling of the positions and orientations of solvent molecules. For this reason, a 
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sufficient number of MD snapshots need to be generated from MD simulations, and the 

calculated 𝑆𝑐𝑎𝑔𝑒(�⃗⃗� , 𝒗𝒎⃗⃗ ⃗⃗  ⃗) from those MD snapshots need to be averaged. For example, if 

200,000 snapshots from the MD simulation are extracted, then the orientation-dependent 

PDFs calculated from those MD snapshots are averaged for each unit angular vector as 

follows: (Supplementary Fig. 7c).  

𝑔𝑗𝑘
𝑎𝑣𝑒(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗) =  ∑ 𝑔𝑗𝑘

(𝑖)(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗)

200,000

𝑖=1

 

(S21) 

, where 𝑔𝑗𝑘
(𝑖)(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗) is the orientation-dependent PDF calculated from the i-th MD snapshot 

and 𝑔𝑗𝑘
𝑎𝑣𝑒(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗) is the averaged orientation-dependent PDFs over 200,000 MD snapshots. 

Using the averaged orientation-dependent PDFs (𝑔𝑗𝑘
𝑎𝑣𝑒(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗)), the cage scattering pattern 

arising from the anisotropic orientation of the solute molecules is calculated with the 

following equation. 

𝑆𝑐𝑎𝑔𝑒′(�⃗⃗� ) =∑∑∑𝑓𝑗(|�⃗⃗� |)𝑓𝑘(|�⃗⃗� |)𝑛𝑘∫
4𝜋𝑟2

𝑁
(𝑔𝑗𝑘

𝑎𝑣𝑒(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗) − 1) 𝑐𝑜𝑠(𝑟𝒒 ⃗⃗  ⃗ ∙ 𝒗𝒎⃗⃗ ⃗⃗  ⃗)

𝑘

𝑑𝑟

𝑗

𝑁

𝑚

 

 (S22) 

So far, we explained how the cage scattering term for a single solute molecule with a 

certain fixed orientation embedded in a box of solvent molecules.  

The next step is to consider the effect of the anisotropic distribution induced by the 

photoselective alignment. The single-photon excitation process induced by a linearly 

polarized laser pulse generates an anisotropic distribution of excited molecules and the 

surrounding solvents, which initially has the cosine-squared distribution2. Then, the 

anisotropic distribution of excited molecules is given by P(𝜙) ∝ cos2𝜙, where 𝜙 stands for 

the angle between the laser polarization and the transition dipole moment. To consider the 
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effect of molecular orientations, we rotated each MD snapshot to retrieve the molecular 

orientations induced by the photoexcitation where the rotated solute molecules have the cos2 

distribution, as shown in Supplementary Fig. 7b. For each of the rotated MD snapshots, the 

corresponding orientation-dependent PDFs were calculated following the procedures 

described above. Then, the orientation-dependent PDFs calculated from the rotated MD 

snapshots were averaged for each unit angular vector using Eq. (S21). Using the averaged 

orientation-dependent PDFs (𝑔𝑗𝑘
𝑎𝑣𝑒(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗) ), the cage scattering pattern arising from the 

anisotropic orientation of the solute molecules was calculated with Eq. (S22). Finally, 

isotropic and anisotropic cage terms were extracted from 𝑆𝑐𝑎𝑔𝑒′(�⃗⃗� ) following the previously 

reported procedures1 as shown in Supplementary Fig. 8. 

 

Supplementary Notes 

Supplementary Note 1: The accuracy and limitations of the current analysis 

In the current work, classical MD simulations, which do not treat hydrogen bonding 

explicitly, were used to account for the distribution of the solvent molecules around I3
- whose 

structure is frozen during the simulation. Due to the possibility of interdependence among the 

geometry, the charge distribution, and the hydrogen bonding of I3
-, a more sophisticated ab 

initio MD simulation taking these into account more explicitly may provide a more accurate 

result than the classical MD simulation employed in the current work. Nevertheless, it should 

be noted that the molecular structure of I3
- obtained from the currently available ab initio MD 

simulation itself shows difference from the experimentally determined structure yet. More 

specifically, whereas the two I-I distances of the reported average structure from an ab initio 

MD simulation (2.94 Å  and 3.09 Å ) agree well with those (2.96 Å  and 3.09 Å ) of the 

optimized structure from the TRXL data, the I-I-I angle from the ab initio MD simulation 

(170.6°) is noticeably larger than that from the TRXL data (152.0°). For this reason, we 
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optimized both the molecular structure and charge distribution based on the TRXL data. The 

structural fitting of the molecular structure partly compensates the current imperfection of ab 

initio MD simulations. For example, regarding the interdependence of the structure and 

charge distribution, the molecular structure is mostly determined by the high q data where the 

influence of the cage term is small. Therefore, the molecular structure can be accurately 

determined from the high q region of the TRXL data even without any consideration for the 

interdependence. Regarding hydrogen bonding, to check if the classical MD simulations with 

the OPLS-AA force field, a six-site all-atom (AA) model, can account for hydrogen bonding, 

we used the MD snapshots to calculate the theoretical static scattering curve of I3
- in 

methanol. The calculated curve agrees well with the experimental scattering curve 

(Supplementary Fig. 15). The six-site AA model is known to reproduce the results from the 

classical three-site models with UA (united atom model) where identical atoms are treated 

altogether. The differences between the six-site and the three-site models regarding the 

intermolecular potential or the molecular structural parameters are negligible compared to 

those between various other models proposed for methanol. In addition, if we distribute the 

charge of the methyl group (-CH3) in the three-site model by the C:H ratio of 4:7 in the six-

site model, it was reported that the dipole moment of methanol increases by only ~10%, 

which is still small compared to the electronegativity between C/H and I19-21. Thus, the 

conclusion regarding the charge distribution is unlikely to be affected by the choice of the 

force field. Nevertheless, one cannot rule out the possibility that the exact global minimum 

may change if different MD simulations to obtain the cage term coupled with the charge 

distribution are used instead of the current classical MD simulations with the OPLS-AA force 

field. The exploration in this regard is beyond the scope of the current study, but the approach 

outlined in this work should provide a road for such efforts. 
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Supplementary Note 2: Simulations to quantify the sensitivities of isotropic and 

anisotropic signals on the shorter-bond and longer-bond dissociations 

To ensure that the shorter-bond dissociation and longer-bond dissociation can be 

distinguished by the TRXL data and to quantify the sensitivities of ΔSiso and ΔSaniso on the 

two dissociation models, we conducted simulations. For this simulation, we considered that 

the dissociation process is completed and the anisotropic orientational distributions of I2
- and 

the depleted population of I3
-. The direction of the transition dipole in I3

- becomes the 

direction of bond dissociation, and a linearly polarized laser pulse preferentially excites 

molecules with the transition dipoles oriented along the laser polarization direction with a 

cosine-square distribution. More specifically, the excited molecules are oriented with a 

distribution of cos2𝜙, where 𝜙 is the angle between the laser polarization and the transition 

dipole. For the simulation, we considered that IB-IC of I3
- is aligned to the laser polarization 

for the case of the shorter I-I bond dissociation, whereas IA-IB is aligned for the case of the 

longer-bond dissociation. Noticeably, to calculate the ΔSaniso more accurately, we took the 

anisotropic cage terms of I3
- and I2

- into account for the calculation. In the simulations, the 

structural information of both I3
- and I2

- was set at those obtained from structural analysis at 

100 ps (RAB = 3.09 Å, RBC = 2.96 Å, θ = 152˚, and R(I2
-) = 3.25 Å). Details on calculating 

difference scattering curves of isotropic and anisotropic components are described in 

references1,2. Results are shown in Supplementary Fig. 9. Because ΔSiso calculated by the 

Debye equation is independent of the orientation of the molecules, both models show 

identical isotropic difference scattering curves (Supplementary Fig. 9a). In contrast, the 

transition dipole moment of the molecule which is aligned to the polarization axis of the 

pump laser should be considered to calculate the ΔSaniso. The one-photon excitation process 

induces the cosine square distribution along the laser polarization axis of the target molecules, 

and the direction of dipole moment determines the angular distribution of the excited and 
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unexcited molecules. Thus, we calculated the ΔSaniso assuming that RBC and RAB are parallel 

to the transition dipole moment of I3
- for the shorter-bond dissociation model and the longer-

bond dissociation model, respectively. Calculated ΔSaniso of each model is presented in 

Supplementary Fig. 9b. For calculating the anisotropic difference curves, anisotropy 

coefficients of I3
- and I2

- were set to be unity. The simulation results show that the ΔSaniso 

curves from two dissociation models show a noticeable difference in several q regions, 

around 3, 4, and 6 Å-1. It should be noted that the structural information used for each 

dissociation model is the same for both models. Thus, we can conclude that the molecular 

alignment during the photoexcitation process, especially using the linearly polarized pump 

laser, can be resolved using the anisotropic signal of solution scattering signal.  
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Supplementary Table 

Table S1. Structural parameters of I3
- and I2

- optimized from the structural fitting 

analysis. 
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Supplementary Figures 

 

  

Supplementary Fig. 1. Raw 2D difference x-ray scattering images at two representative 

time delays. The experimental 2D difference scattering images at 1 ps (left) and 100 ps (right) 

are shown for comparison. The former and latter are anisotropic and isotropic, respectively.  
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Supplementary Fig. 2. Experimental difference scattering curves. The qΔSaz, qΔSiso, and 

qΔSaniso curves from fs-TRXL data on I3
- in methanol are shown. All plots share a color scale 

representing the amplitude of the signal in absolute electronic units per solvent molecule. 
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Supplementary Fig. 3. Comparison of the data of this work with that of previous work. 

The experimental 100 ps data measured at KEK from the previous study (black) with the 

corresponding standard error as error bars4 and the 100 ps data of this study measured at 

PAL-XFEL (red) are compared. For comparison, a polychromatic correction was applied to 

the PAL-XFEL data because the data at KEK used a polychromatic x-ray beam with a broad 

bandwidth. 
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Supplementary Fig. 4. The effect of charge distribution on the cage term and the results 

of the grid searching with a fixed cage structure. (a-c) MD simulations of various 

conformations and charge distributions were conducted, and the resulting PDFs of the oxygen 

of methanol and each I atom of I3
- are shown for three cases: (a) the structure and charge 

distribution of I3
-
 calculated by DFT calculation was used, (b) the initial structure from the 

structural fitting process with a symmetric charge distribution where the charge is shared by 

two terminal iodine atoms was used, and (c) the initial structure from the structural fitting 

process with the localized negative charge on the terminal I atom (IC) was used. (d-e) The 

corresponding (d) cage terms and (e) solute terms are displayed. The PDFs in (a) – (c) and the 

cage terms in (d) show that the change in charge distribution induces a dramatic change in the 

cage structure.   
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Supplementary Fig. 5. The procedure for grid search analysis to verify the charge 

distribution. For the grid search analysis, two search processes, the initial grid searching and 

the structure refinement at each grid point, were conducted. For the first step (initial grid 

searching), initial charge grid points and the corresponding cage term at each grid point were 

prepared using the structural information determined from the initial fitting process (RAB = 

3.14 Å, RBC = 2.92 Å, θ = 151.2˚). From the results, we can get the fitted results of I3
- and I2

- 

which were used to calculate new cage terms for structure refinement. For the second step 

(structure refinement), the cage term at each grid point was calculated using the structural 
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information extracted from the previous step. From this two-step grid searching process, we 

obtained the refined grid searching results.  
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Supplementary Fig. 6. Methodology to construct the orientation-dependent PDF. (a) The 

evenly-spaced unit angular vectors devised to describe the anisotropic distribution of solvent 

used for calculating anisotropic cage term are indicated as blue dots. The unit angular vectors 

form a unit sphere spanning the space around the solute atom and are used to calculate 

orientation-dependent PDFs. (b) With the evenly-spaced unit angular vectors, we first 

generated a new sphere by expanding the unit sphere so that the MD box can be included 

inside the expanded sphere. The expanded sphere with a radius of 20 Å was enough to cover 

the MD box. This expanded sphere around a solute molecule is evenly divided into 

polyhedral cones, each of which has an equal solid angle and has a direction specified by a 
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unit angular vector. To calculate the orientation-dependent PDF for an MD snapshot (for 

example, 𝑔𝑗𝑘
(𝑖)(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗) for i-th MD snapshot), we identified the desired atoms (for example, k) 

of solvent molecules within the polyhedral cone of the expanded sphere and calculated the 

PDF for the cross pair of an atom of a solute molecule (for example, j) and the selected 

solvent atoms within each polyhedral cone specified by 𝒗𝒎⃗⃗ ⃗⃗  ⃗. 
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Supplementary Fig. 7. Generating cos2𝜙 distribution to calculate the anisotropic cage 

terms. (a) One of MD snapshots used for calculating anisotropic cage terms is shown (red: 

iodine, blue: oxygen, black: carbon, light gray: hydrogen). As a first step for calculating an 

anisotropic cage term, 200,000 MD snapshots were rotated so that the rotated solute 

molecules have the distribution of P(cos 𝜙) ∝ cos2𝜙. (b) The population of orientations of 

the rotated MD snapshots as a function of cos 𝜙  is shown. This population can be 

approximated as the cos2𝜙 distribution, confirming that the rotation targeting the desired 

cos2𝜙  distribution worked well. (c) For each rotated MD snapshot, the corresponding 

orientation-dependent PDFs, 𝑔𝑗𝑘
(𝑖)(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗) , was calculated, and the resulting 200,000 

orientation-dependent PDFs were averaged to yield the averaged orientation-dependent PDFs, 

𝑔𝑗𝑘
𝑎𝑣𝑒(𝑟, 𝒗𝒎⃗⃗ ⃗⃗  ⃗). The averaged orientation-dependent PDFs of the IA-O pair obtained from MD 
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snapshots for linear symmetric I3
- are shown as an example. 
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Supplementary Fig. 8 Calculated cage scattering patterns using Eq. (S22). All plots share 

a color scale representing the amplitude of the signal in absolute electronic units per solvent 

molecule. 
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Supplementary Fig. 9. Effect of photoselective alignment and the direction of bond 

cleavage on the isotropic and anisotropic scattering signals. (a) The theoretical qΔSiso for 

two dissociation models are compared. Since there is no difference between shorter-bond 

dissociation (IB-IC aligned) and longer-bond dissociation (IA-IB aligned) models in calculating 

isotropic signal, the calculated results show two identical qΔSiso. (b) The theoretical qΔSaniso 

for two dissociation models are compared. Two different qΔSaniso were calculated using 

identical molecules with different alignment along the laser polarization axis. (c) The 

alignment directions for two dissociation models are indicated with the black (shorter-bond 

dissociation) and the red (longer-bond dissociation) arrows.  
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Supplementary Fig. 10. The population change of I2
-. The population change of the I2

- 

determined from the fitting of the dataset, which spans -2 ps to 100 ps (black dot). The time-

dependent population change of I2
- was fitted with a double-exponential function convoluted 

with the IRF (instrument response function) of a Gaussian function. The width of IRF was 

determined from the rSV fitting results (0.27 ps, FWHM).  
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Supplementary Fig. 11. The calculated rotational correlation function of I3
- and I2

- by 

the MD simulation. Rotational correlation functions (RCF) of solute molecules are 

calculated by the MD simulation. RCF was calculated at the equilibrium-state molecules by 

averaging the RCF of each MD snapshot. For each case, the RCF from simulation (black) and 

the exponential fit (red) are presented. (a) The RCF of I3
- that has the optimized structure and 

charge distribution is shown. The fitted curve gives a rotational diffusion time constant of 

15.8 ± 0.2 ps. (b) The RCF of I2
- is shown. The fitted curve gives a rotational diffusion time 

constant of 3.8 ± 0.1 ps. (c) The RCF of I3
- which has the localized charge on the central 

iodine atom is shown. The fitted curve gives a time constant of 21.8 ± 0.2 ps. (d) The RCF of 

I3
- where the charge is equally distributed on both terminal iodine atoms is shown. The fitted 
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curve gives a time constant of 8.9 ± 0.1 ps time constant.  



S44 

 

 

Supplementary Fig. 12. SVD results. The SVD results of the (a) isotropic and (b) 

anisotropic qΔS(q,t) at the t = -0.6 ~ 6.9 ps region show the early time dynamics. The SVD 

results of the (c) isotropic and (d) anisotropic qΔS(q,t) data at the t = -2 ~ 100 ps region show 

late time delay dynamics. In each figure, left singular vectors and right singular vectors 

multiplied by the corresponding singular values are shown in the left and right panels, 

respectively. 
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Supplementary Fig. 13. Experimentally measured isotropic and anisotropic heating 

signals. For the fitting process, we experimentally measured the heating signal using a 

heating dye. (a) The obtained isotropic heating signal, ΔSheat,iso, and (b) the anisotropic 

heating signal, ΔSheat,aniso, are presented. (c) Because the analyzed time delays in our study are 

within 100 ps where the thermal expansion does not occur yet, the main contribution of the 

solvent heating process is the temperature solvent differential, 
𝜕𝑆(𝑞)

𝜕𝑇
|
𝜌

, which was obtained by 

taking the signal at 100 ps. (d) We extracted ΔSKerr from the ΔSheat,aniso by taking the 1st lSV 

of the SVD result. 
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Supplementary Fig. 14. Fit results for the isotropic and anisotropic difference scattering 

curves of the I3
- solution. Experimental curves with the corresponding standard error as error 

bars and the theoretical curves are shown in black and red lines, respectively. 

  



S47 

 

 

Supplementary Fig. 15. Comparison between the experimental static scattering curve 

and the calculated static scattering curve from the MD simulation. 
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Supplementary Fig. 16 Comparison of the cage terms for I3
- → I2

- + I and I3
- → I2

-* + I. 

The cage term for I3
- → I2

- + I is shown in black and that for I3
- → I2

-* + I is shown in red. 

Their difference, which corresponds to the cage for I2
-* → I2

-, is shown in blue. I2
-* and I2

- 

indicate the vibrationally excited diiodide (R(I2
-) = 3.34 Å) and vibrationally relaxed diiodide 

(R(I2
-) = 3.25 Å), respectively.  
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Supplementary Fig. 17 Comparison of the fitting results using two different cage models. 

(a) The cage terms of the equilibrium cage model and the non-equilibrium cage model are 

presented. (b) The wR-factors of two cage models are shown. The equilibrium cage model 

shows smaller wR-factors at early time delays. 
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