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Supplementary Methods 

1. Femtosecond time-resolved x-ray liquidography (fs-TRXL) experiment  

The experiment was conducted at the XSS beamline of PAL-XFEL (the Pohang Accelerator 

Laboratory X-ray Free-Electron Laser)1,2. The XFEL delivered x-ray pulses with 12.7 keV energy 

and a temporal width less than 50 fs at a repetition rate of 30 Hz to the experimental hall of the 

XSS beamline, and the x-ray beam was focused to a spot of ~30 μm diameter. Optical pump pulses 

at the wavelength of 400 nm were generated via second-harmonic generation of the 800 nm 

femtosecond laser pulses from a Ti:sapphire regenerative amplifier. The optical pump pulses were 

temporally compressed to a temporal width of ~100 fs at the sample position and spatially focused 

to a spot of ~200 μm diameter, yielding a laser fluence of ~1.8 mJ/mm2. The x-ray and the optical 

laser beams were overlapped at the sample position in a collinear geometry. 

The sample solution of BiI3 was prepared by dissolving powder of bismuth iodide (BiI3, 

Aldrich, 99%) in acetonitrile (Aldrich, anhydrous, 99.8%) at a concentration of 1 mM. In addition, 

0.5 mM a dye, 4-bromo-4′-(N,N-diethylamino)-azobenzene (HANCHEM, 99.9%), in acetonitrile 

was prepared to measure the solvent heating signals. All of the reagents were used as received 

without further purifications. The sample solution was circulated through a quartz capillary nozzle, 

which provided a free-flowing cylindrical liquid jet of 100 μm diameter, delivering a fresh sample 

solution for every pump-probe pair. Scattered x-rays were detected by a Rayonix MX225-HS CCD 

(5760 × 5760 pixels with a pixel size of 39 μm) placed ~33.7 mm behind the liquid jet, which 

allowed a q-space coverage up to ~7.5 Å −1. The detector was operated in the 4 × 4 binning mode. 

The scattering images were measured at 134 pump-probe time delays, which were −950 fs – 1.95 

ps (with 25 fs time interval), 2.51 ps, 3.16 ps, 3.98 ps, 5.01 ps, 6.31 ps, 7.94 ps, 10 ps, 12.5 ps, 

15.8 ps, 19.9 ps, 25.1 ps, 31.6 ps, 39.8 ps, 501. ps, 63.0 ps, 79.4 ps, and 100 ps. The laser-off 

images were repeatedly measured at a time delay of −3.0 ps before taking every laser-on image. 

We performed 13 independent sets of measurements (runs) and obtained ~2,560 images per time 

delay on average. The timing jitter between the x-ray and optical laser pulses was corrected in real 

time using an Optical laser and XFEL Cross-correlator (OXC) timing feedback tool. 

 

2. Data processing 

The time-resolved two-dimensional (2D) difference scattering images were obtained by 

subtracting the laser-off images from the laser-on images. The 2D difference scattering images 
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were converted to one-dimensional (1D) azimuthally-integrated difference scattering curves, 

ΔSazimut(q, t), by calculating the average intensity as a function of the momentum transfer, q = 

(4π/λ)∙sin(2θ/2) = (4π/λ)∙sin[1/2∙tan−1(l/d)], where λ is the wavelength of x-ray, the 2θ is the 

scattering angle, l is the distance from the beam center to a given pixel and d is the sample-to-

detector distance (see Supplementary Fig. 2). The resultant scattering curves are contaminated by 

systematic noise. To get rid of the systematic noise, we applied the SANOD method3 to ΔSazimut(q, 

t) and used the output ΔSazimut(q, t) for the subsequent data processing (see Supplementary. Fig. 4). 

As can be seen in Supplementary Fig. 2, the raw difference scattering images are anisotropic, 

and therefore ΔSazimut(q, t) can be decomposed into anisotropic and isotropic components. Based 

on a well-established method4,5, the 2D difference scattering images at each time delay were 

decomposed into 1D anisotropic and isotropic difference scattering curves, ΔSaniso(q, t) and ΔSiso(q, 

t), respectively (see Supplementary Fig. 4). Briefly, the difference scattering images can be 

decomposed as follows 

iso 2 aniso( , , ) ( , ) (cos ) ( , )q qS q t S q t P S q t    +   (S1) 

where 
2

2 ( ) (3 1) / 2= −P x x  is the second-order Legendre polynomial, and θq is the angle between 

the laser polarization axis and the momentum transfer vector. For the configuration of fs-TRXL 

experiment where x-ray beam and optical laser are almost collinear, which is the standard 

experimental geometry of fs-TRXL including that of this work, cosθq can be expressed as follows 

cos cos cos  = −q  (S2) 

where ϕ is the azimuthal angle on the detector plane. Following the linear relation between P2(cos 

q) and the scattering intensity in equation (S1), the contributions of ΔSaniso(q, t) and ΔSiso(q, t) can 

be considered as the slope and intercept, respectively, of a linear function with P2(cos q) as an 

independent variable defined along the ϕ on the detector plane at a given θ (or q). Therefore, at 

each q, ΔSaniso(q, t) and ΔSiso(q, t) as well as their corresponding errors can be obtained through a 

linear-regression fit.  

 The systematic noises generate an artifact in the scattering curve with the shape similar to 

the scattering curve arising from the solvent density change mainly in the low-q region. 

Considering that the spatial fluctuation of the liquid jet is one of the major origins of the systematic 

noises, we can infer that the systematic noises affect the scattering curve in an isotropic manner. 

Therefore, most of the systematic noises arise from ΔSiso(q, t) and ΔSaniso(q, t) should be free from 

the effect of systematic noises. By taking advantage of the noise-free ΔSaniso(q, t), we filtered out 
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the noise from ΔSiso(q, t) in the following manner. First, 2D anisotropic images were inversely 

reconstructed from ΔSaniso(q, t). Then, by azimuthally averaging the reconstructed 2D anisotropic 

images, we obtained the anisotropic component of the azimuthally averaged 1D difference 

scattering curves, ΔSaniso,azimut(q, t) (see Supplementary Fig. 4). By subtracting this anisotropic 

component from ΔSazimut(q, t), noise-filtered ΔSiso(q, t) were obtained (see Supplementary Fig. 4). 

These procedures were applied to each of multiple runs. After correcting the time-zero of each run 

and taking an average, we finally obtained ΔSiso(q, t), which were used in the subsequent analysis. 

The resultant ΔSiso(q, t) were further scaled to the absolute scale corresponding to the scattering 

intensity of one solvent molecule by multiplying the scaling factor, which was obtained from the 

comparison of the scattering intensity in the high-q region (q = 3.5 ~ 6.5 Å −1) of ΔSiso(q, 100 ps) 

with that of the 100-ps scattering curve measured at ESRF, which had been already scaled to the 

absolute scale in our previous study6. In supplementary Fig. 16, the scaled ΔSiso(q, 100 ps) is shown 

together with the ΔSazimut(q, 100ps) measured at ESRF.  

 

3. Singular value decomposition of ΔSiso(q, t) and ΔSaniso(q, t) 

To examine the temporal behavior of the scattering data, we applied the singular value 

decomposition (SVD) analysis to both ΔSaniso(q, t) and ΔSiso(q, t) by reforming each data set into 

the form of nq × nt matrix, M, where nq and nt are the number of data points along the q- and t-

axes, respectively. Upon the SVD, each of the ΔSaniso(q, t) and ΔSiso(q, t) can be decomposed into 

three matrices satisfying the relationship M = U∙S∙VT where the superscript T means the transpose 

of a matrix, U is an nq × nt matrix whose column vectors are called the left singular vectors (LSVs), 

S is a diagonal nt × nt matrix whose elements (si, where i = 1 – nt) are called singular values of a 

matrix M, and V is an nt × nt matrix whose column vectors are called the right singular vectors 

(RSVs). The LSVs represent time-independent scattering curves, and RSVs represent the time-

dependent amplitude changes of the corresponding LSVs. The singular values represent the 

weights of the corresponding LSVs and RSVs. Since the singular values are ordered such that s1 

≥ s2 ≥ … ≥ sn ≥ 0, the left-hand columns of U and V have a larger contribution to the data.  

From the SVD analysis of ΔSiso(q, t), four significant RSVs were obtained (see 

Supplementary Fig. 5). The first five RSVs of ΔSiso(q, t) of the BiI3 solution weighted by the 

corresponding singular values are shown in Supplementary Fig. 5a. Among those RSVs, 3rd and 

4th RSVs (RSV3 and RSV4) mainly contribute to the signal on the sub-ps time scales; when the 
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two RSVs are removed from ΔSiso(q, t), the ultrafast shifts of the positive and negative peaks in q-

space occurring at < 500 fs disappear, as shown in Supplementary Fig. 17. Therefore, we can infer 

that the first two RSVs of the ΔSiso(q, t) of the BiI3 solution contain the population kinetics of 

reacting chemical species while RSV3 and RSV4 are associated with coherent motions of BiI3. 

Thus, to extract the population kinetics, we globally fit the first two RSVs using a sum of 

exponential functions convoluted with a Gaussian instrumental response function (IRF). As shown 

in Supplementary Fig. 6a and b, a sum of four exponential functions was enough to fit those two 

RSVs satisfactorily, whereas a sum of three exponential functions did not.  As a result, we obtained 

four time constants, 508 (± 13) fs, 3.11 (± 0.43) ps, 8.83 (± 1.11) ps, and 11.90 (± 1.67) ps, and 

the full width at half-maximum (FWHM) of the IRF was determined to be 162 (± 7) fs. 

In Supplementary Fig. 3, the first two RSVs and LSVs of ΔSaniso(q, t) are shown in comparison 

with ΔSaniso(q, t) of a dye solution, and it can be seen that ΔSaniso(q, t) are dominated by the first 

two singular values. We note that, as shown in Supplementary Figs. 3a and b, the first two SVs of 

significant contributions obtained from ΔSaniso(q, t) of BiI3 solution are nearly identical to those 

obtained from ΔSaniso(q, t) of a dye solution. Since ΔSaniso(q, t) of the dye solution originates from 

the optical Kerr effect (OKE) of neat solvent, that is, transient alignment of solvent molecules 

induced by polarized optical field, the similarity of ΔSaniso(q, t)’s of the BiI3 and dye solutions 

indicates that the structural dynamics of BiI3, which is of our interest, are not reflected in ΔSaniso(q, 

t) but contained only in ΔSiso(q, t). Therefore, only ΔSiso(q, t) of the BiI3 solution was further 

analyzed. 

 

4. Extraction of the difference scattering signal, ΔSiso’(q, t), representing the exponential 

kinetics 

The difference scattering signal, ΔSiso(q, t), of BiI3 solution has rich features including the signals 

from both exponential kinetics and coherent dynamics. To simplify the analysis, we first extracted 

and analyzed the contribution corresponding to the exponential kinetics, termed ΔSiso’(q, t). As 

explained in the previous section, the first two RSVs of the ΔSiso(q, t) of the BiI3 solution contain 

information on the exponential kinetics. To reconstruct ΔSiso’(q, t), the 1st and 2nd RSVs in the V 

of ΔSiso(q, t) were replaced by their corresponding fit curves, and the 3rd and 4th SVs were filtered 

by setting the corresponding singular values, LSVs and RSVs to zero in the S, U and V, generating 

a new set of matrices, U’, S’, and V’. By using the relation M = U∙S∙VT, ΔSiso’(q, t) were 
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constructed in the form of U’∙S’∙V’T. These procedures are relevant only for the scattering data at 

early time delays, where coherent dynamics are present, and therefore were applied to the data up 

to the time delay of 2 ps. Since the coherent dynamics are nearly absent after 2 ps in our data, Δ

Siso’(q, t) was set to be equal to the original data, ΔSiso(q, t), after 2 ps. The reconstructed signals, 

ΔSiso’(q, t), representing the exponential kinetics are shown in Supplementary Fig. 18. As stated in 

the previous section, ΔSiso(q, t) of BiI3 solution was fitted by four exponentials with time constants, 

508 (± 13) fs, 3.11 (± 0.43) ps, 8.83 (± 1.11) ps, and 11.90 (± 1.67) ps, 

The separation of signal contributions corresponding to exponential kinetics and coherent 

dynamics can be expressed as follows: 

es gs

solvent

es es,eq es,eq gs

solvent
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solvent

'
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(S3) 

(S4) 

(S5) 

(S6) 

where c(t) is the fractional concentration of excited molecules, Ses(q ,t), Ses,eq(q), Sgs(q) is the 

scattering signals from the time-dependent structures of the solute (or cage) in the excited-state, 

equilibrium structure of the solute (or cage) in the excited-state and the structure of the solute (or 

cage) in the ground-state, respectively, and ΔSsolvent(q, t) is the difference scattering signal arising 

from the temperature rise of the bulk solvent, whose detailed description is given in the following 

section. Therefore, the kinetics of solute and solvent as well as time-independent excited-state 

structures can be obtained by analyzing ΔS’(q, t). Then, as the next step, the time-dependent 

snapshots of the structures of reacting molecules can be obtained by analyzing ΔSresidue(q, t) or, 

equivalently, the whole signal, ΔS(q, t), based on the information of kinetics and equilibrium 

structure obtained from ΔS’(q, t). In this work, we chose the later method. 

 

5. Global fit analysis on ΔSiso’(q, t) 

As mentioned in the main text, the previous TRXL study on BiI3 in solution reported an isomer 

(iso-BiI2-I) and dissociation fragments (BiI2· and I·) are the only detectable solute species at 100 

ps 6. Fitting ΔSiso’(q, t) at earlier time delays, for example, 1 ps, using the scattering curves of these 

known components of solute and solvent did not provide any satisfactory agreement, as shown in 



 

 

S9 

 

Supplementary Fig. 8. Therefore, we hypothesized that an additional intermediate, “X”, was 

involved in the time delays earlier than 100 ps.  

Then, we built kinetic models including the X intermediate by assuming that three out of the 

four time constants obtained by fitting RSVs correspond to the kinetics of solute and the other one 

to the heating kinetics of bulk solvent. According to our previous result 
6, “X” should completely 

decay to another species before 100 ps. Also, the fs-TRXL data of the BiI3 solution shown in Fig. 

2a undergoes a significant reduction of the overall amplitude over time. Thus, at least one of the 

reacting species should relax back to the ground-state BiI3. We built eleven kinetic model frames 

compatible with these conditions, as shown in Supplementary Fig. 9. These eleven kinetic model 

frames require three time constants, τa, τb, and τc, to be assigned, as shown in Supplementary Fig. 

9. Accordingly, three time constants from the four time constants obtained from the fit of RSVs 

were selected and distributed to τa, τb, and τc while the remaining time constant was assigned to the 

solvent heating. In this way, we built a total of 264 kinetic models (24 per each kinetic model 

frame), each of which was tested through global fit analysis (GFA) on ΔSiso’(q, t). We note that if 

only three exponentials are used, then the whole kinetic framework of the solute needs to be 

described with only two exponentials (one is for the solvent heating). Such a kinetic framework 

cannot explain the experimental data well.  

In GFA, ΔSiso’(q, t) was fit against theoretical scattering curves, ΔStheory’(q, t), by minimizing 

the reduced χ2 value (χ2
red), which is defined as follows 

( )
2

' '

theory iso2

red 2
time delay ,

( , ) ( , )1

1

i j i j

j i i j

S q t S q t

N p


=

 −
=

− −
   (S7) 

where N is the total number of data points along the q- and t-axes, p is the number of fit parameters, 

and σi,j is the standard deviation of the difference scattering intensity at ith q of jth time delay. The 

χ2
red

 minimization was performed using the MINUIT package written at CERN and the error 

analysis was performed by MINOS, a built-in algorithm in the MINUIT software7. ΔStheory’(q, t) 

was constructed by a linear combination of the scattering signals of solute and solvent as follows 

8 

'

theory solute cage solvent( , ) ( , ) ( , ) ( , )S q t S q t S q t S q t =  + +  (S8) 

where the symbols are explained in the following. During the GFA process, (i) the excitation ratio, 

(ii) a prefactor for the exponential growth function for describing the temperature rise of the 

solvent, and (iii) the structural parameters for “X”, which will be described in the following section, 
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were used as the free parameters for the fit. Depending on the kinetic model frame, several 

branching ratios are used as free parameters among eight branching ratios, which are (i) the ratio 

between the initial “X” and the dissociation fragments, (ii) the ratio of “X” relaxing to the iso-BiI2-

I, (iii) the ratio of “X” relaxing to the ground-state BiI3, (iv) the ratio of “X” relaxing to the 

dissociation fragments, (v) the ratio of dissociation fragments recombining to the iso-BiI2-I, (vi) 

the ratio of dissociation fragments recombining to the ground-state BiI3, (vii) the ratio of 

dissociation fragments recombining to “X”, and (viii)  the ratio of the remaining dissociation 

fragments. For model frame A, four branching ratios of (i), (ii), and (vi) are used as free parameters, 

while the ratio of the remaining dissociation fragments and the ratio of “X” relaxing to the ground-

state BiI3 are determined as 1−branching ratio (vi) and 1−branching ratio (ii), respectively. For 

model frame B, four branching ratios of (i), (v), (vi) and (viii) are used as free parameters. For 

model frame C, three branching ratios of (i), (ii), and (v) are used as free parameters, while the 

ratio of the remaining dissociation fragments and the ratio of “X” relaxing to the ground-state BiI3 

are determined as 1−branching ratio (v) and 1−branching ratio (ii), respectively. For model frame 

D, four branching ratios of (i), (v), (vi), and (viii) are used as free parameters. For model frame E, 

four branching ratios of (i), (v), (vi), and (viii) are used as free parameters. For model frame F, 

three branching ratios of (i), (iv), and (v) are used as free parameters, while the remaining 

dissociation fragments and the ratio of “X” relaxing to the ground-state BiI3 are determined as 1

−branching ratio (v) and 1−branching ratio (iv), respectively. For model frame G, three branching 

ratios of (i), (iv), and (v), while the ratio of “X” relaxing to the iso-BiI2-I are determined as 1−

branching ratio (v) and 1−branching ratio (iv), respectively. For model frame H, three branching 

ratios of (i), (ii), and (iii) are used as free parameters. For model frame I, four branching ratios of 

(i), (v), (vii), and (viii) are used as free parameters. For model frame J, four branching ratio of (i), 

(vi), (vii), and (viii) are used as free parameters. For model frame K, three branching ratios of (i), 

(ii), and (vii) are used as free parameters, while the ratio of the remaining fragments and the ratio 

of “X” relaxing to the ground-state BiI3 are determined as 1−branching ratio (vii) and 1−

branching ratio (ii), respectively. 

The scattering signal of solute, ΔSsolute(q, t), came from the molecular structures of the solute 

molecules involved in the photoreaction and was calculated by the well-known Debye equation 

based on the structures of solute molecules. The structures of BiI2·, iso-BiI2-I, and ground-state 
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BiI3 were used as reported in the previous TRXL study on the BiI3 in solution 6. The structure of 

“X” was optimized during GFA by using the structural parameters for “X” as free parameters for 

the fit and using the structure of the ground state BiI3 as the initial starting structure. To determine 

the structure of “X”, we introduced total five structural parameters, one for simultaneously 

modifying the two Bi-I bonds (Ia-Bi and Bi-Ib), constraining the two bonds to have the same length, 

and the others for the Bi-Ib-Ic angle, the Ia-Bi-Ib-Ic dihedral angle, the Ia-Bi-Ib angle, and the Ib‧‧‧Ic 

distance. 

The scattering signal of the cage, ΔScage(q, t), stems from the atomic pair distances between 

solute and solvent molecules and can be theoretically calculated from pair distribution functions 

(PDFs) obtained from the molecular dynamics (MD) simulations. Since we have already calculated 

the cage signal of the dissociation fragments, iso-BiI2-I, and ground-state BiI3, only the cage signal 

for “X” was newly calculated. The molecular structure of “X” used to calculate its cage signal was 

roughly determined by performing GFA by using the cage signal of iso-BiI2-I for that of “X”. Then, 

the obtained structure was used to perform the MD simulation using the MOLDY 9 program with 

the same condition described in our previous study6 and obtained PDFs from which the cage signal 

of “X” was calculated. During the MD simulation, the atomic charges for “X” were approximated 

to those of ground-state BiI3. Considering the relatively small contribution of the cage signal 

compared to that of the solute signal due to the heavy atoms consisting of solute molecules, the 

discrepancy coming from those approximations should not be significant. We calculated the cage 

signal of “X” using the charge values obtained from DFT calculations described in Supplementary 

Method 8, and the calculated cage signal does not show significant difference from that calculated 

with the charge values of the ground-state BiI3. 

 The scattering signal of solvent, ΔSsolvent(q, t), originates from the change of the scattering 

signal due to a temperature increase of the bulk solvent, (∂S(q)/∂T)ρ, scaled by the amount of the 

temperature change, ΔT(t). The temperature derivative of the scattering signal, (∂S(q)/∂T)ρ, can be 

obtained from a separate TRXL experiment on a dye solution as described elsewhere10,11. The 

temperature change, ΔT(t), of the bulk solvent was modeled using an exponential growth function 

as follows 

 0 0( ) 1 exp ( ) / ( )T t A t t H t t =  − − −  −    (S9) 

where A is a prefactor, t0 is the time-zero, τ is the time constant, H(t − t0) is the Heaviside step 

function. In fact, the temperature of the solvent will also respond to the transition between 
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intermediates (for example, early isomer → late isomer or early isomer → ground state) because 

the energy difference between the states is transferred to the solvent, increasing the solvent 

temperature. Considering the current sample concentration (1 mM), excitation ratio, and the 

relative energies of the reacting species, a relatively small amount of additional rise of the solvent 

temperature (~0.05 K for the best kinetic model) is expected. In the fit, however, we did not take 

this additional source of the temperature change into account because the fit qualities were not 

affected meaningfully due to the relatively small contribution of the solvent heating signal. 

By putting all these components together, ΔStheory’(q, t) in GFA is constructed according to 

the following equations 

   
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where R is the number ratio of the solvent molecules to solute molecules, k is the index of the 

solute species, ck(t) is the fractional concentration of kth species at time delay t, Sk(q) is the solute-

related scattering curve of kth species, which consists of the scattering curves of solute and cage, 

Sg(q) is the scattering curve of the ground state BiI3 molecule, IRF(t) is the Gaussian IRF 

determined in the fitting of RSVs and ⊗ is the convolution operator. The fractional concentration 

of each species, ck(t), was calculated by numerically solving differential equations derived from 

the kinetic models. 

In Supplementary Data 1, we summarize the relative χ2
red values with respect to the minimum 

χ2
red value obtained from GFA on 264 kinetic models. The kinetic model A3 gives the best quality 

of fit, and the detailed kinetic parameters determined based on this kinetic model are described in 

the main text and shown in Fig 3a. The concentration profiles of the reacting solute species and 

the time profile of the temperature rise are shown in Fig. 3b and Supplementary Fig. 10, 

respectively. The optimized structure of “X” (the early isomer) from GFA based on the kinetic 

model A3 is shown in Fig. 4. 

 

6. Structural analysis on ΔSiso(q, t ≥ 175 fs) 

Based on the kinetics and the equilibrium structures of the intermediates determined in the GFA 

on ΔSiso’(q, t), the coherent structural motions of the reacting molecules were analyzed by fitting 
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the ΔSiso(q, t). For the time delays later than the experimental IRF (t ≥ 175 fs), the fit was performed 

at each time delay independently using the following equations 

theory g

1
( , 175 fs) ( , ) ( ) ( ) (0) ( )k k k

k k

S
S q t S q t c t S q c T t

R T 
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where Nq is the number of q points, p is the number of parameters, σ(qi, t) is the standard deviation 

of the ΔSiso at qi of time delay t. Terms in Equation (S11) are the same as those in Equation (S10) 

except Sk(q, t). In contrast with the Sk(q) in Equation (S10), the time-dependent structures were 

taken into account in calculating the Debye equation for the solute signal of the solute-related 

scattering curve of kth species, Sk(q, t), which is, therefore, time-dependent here. During the fitting, 

only the structural parameters of “X” and the dissociating BiI3 were used as free parameters while 

the parameters for the kinetics of solute and solvent, ck(t) and ΔT(t), were fixed to the values 

determined in the GFA of ΔSiso’(q, t). For the structure of “X”, five structural parameters, one for 

the two bond lengths, Ia-Bi and Bi-Ib, and the others for Bi-Ib-Ic angle, Ia-Bi-Ib-Ic dihedral angle, 

Ia-Bi-Ib angle, and Ib‧‧‧Ic distance, were used. For the dissociating BiI3, three structural parameters, 

one for Bi‧‧‧Ic distance, another for the two bond lengths, Ia-Bi and Bi-Ib, and the other for Ia-Bi-Ib 

angle. Besides, a Debye-Waller factor (DWF), 
2 2 /2qe , was applied only for the atomic pairs 

accompanying the departing iodine atom, Ic, of the dissociating BiI3 to compensate for the effects 

of the wavepacket dispersion during the dissociation. Hence, the root-mean-squared distance, σ, 

of the DWF was used as another free parameter. Since the dissociating iodine atom has little effect 

on the theoretical scattering curves at time delays later than 600 fs in the measured q-range (1.0 Å -

1 ≤ q ≤ 6.5 Å-1), the fully dissociated fragments, BiI2· and I·, in their equilibrium structures were 

used instead of the dissociating BiI3 for the signals at time delays later than 600 fs. An averaged 

set of structural parameters was obtained by fitting the signals using various initial guesses for the 

structural parameters at each time delay. Specifically, a random structural pool consisting of ~5000 

structures for each time delay was generated within boundary conditions, which are, for the “X”, 

2.68 Å ≤ Ia-Bi and Bi-Ib ≤ 2.816 Å,  40° ≤ Bi-Ib-Ic angle ≤ 80°, 55° ≤ Ia-Bi-Ib-Ic dihedral angle ≤ 

110°, 90° ≤ Ia-Bi-Ib angle ≤ 100°, 3.0 Å ≤ Ib‧‧‧Ic ≤ 4.26 Å, and, for the dissociating BiI3, 2.816 Å ≤ 

Bi‧‧‧Ic ≤ 8.0 Å, 2.68 Å ≤ Ia-Bi and Bi-Ib ≤ 2.816 Å, 90° ≤ Ia-Bi-Ib angle ≤ 100°. The boundary 

conditions were chosen to search the structures between the ground state BiI3 and the final 
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equilibrium structure for each species, which is “X” and the dissociation fragments, BiI2∙ and I∙. 

Every structure in the structural pool of each time delay was used as the initial guess to fit the 

signal at the given time delay. During the fit, those structures were optimized and the 

corresponding χ2
red

 was obtained. With respect to the minimum value of χred
2, min[χ2

red (t)], at the 

given time delay among the obtained χ2
red (t), the output structures giving less than 1.00001 times 

the min[χ2
red (t)] were collected and the structural parameters of those structures were averaged. 

By performing this process at each time delay independently, the time-dependent structural 

motions were obtained. 

 

7. Structural analysis on ΔSiso(q, t < 175 fs) 

For the time delays shorter than, or nearby, the experimental IRF (t < 175 fs), an approach slightly 

modified from that used for the time delays larger than the experimental IRF was used because 

directly fitting the difference scattering signals at the time delays shorter than, or nearby, the 

temporal width of IRF results in distorted structural information as explained in Supplementary 

Note 2. 

Each of the time-dependent parameters for the structures of “X” and dissociating BiI3 and 

σ of the DWF was modeled by a quartic polynomial function, 

4
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where a4−k is the coefficient of the polynomial function. We note that structural fit with a cubic 

polynomial degrades the quality of fit while using quintic polynomial results in a similar quality 

of fit to that with a quartic polynomial. The Debye equations for the solute signal in Sk(q, t) were 

calculated based on x(t) from which the molecular structures were constructed and the DWF for 

the dissociating BiI3 was calculated. Subsequently, the instantaneous theoretical difference 

scattering curves, ΔSinst(q, t), were calculated using the following equation 

inst g
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( , ) ( , ) ( ) ( ) (0) ( )k k k

k k
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   
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   (S14) 

where the terms in Equation (S14) are the same as those in Equations (S10) and (S11). Then, 

ΔSinst(q, t) was temporally blurred by convoluting with the Gaussian IRF, IRF(t), which was 

determined in the fitting of RSVs, resulting in ΔStheory(q, t < 175 fs) as shown in the following 

equation 
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' '

theory inst( , 175 fs) ( , ) IRF( )S q t S q t t  =    (S15) 

where t’ is the dummy variable of time delay. Under the constraints where the polynomial 

functions smoothly connect the structure at 0 fs, which is the structure of the BiI3 at Frank-Condon 

state, and the structures at 175 fs obtained from the fitting using Equations (S10) and (S11), the 

coefficients of the polynomial functions for each structural parameter were optimized by 

minimizing χ2
red using the following equation 
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where N is the total number of data points along the q- and t-axes, p is the number of fit parameters, 

and σi,j is the standard deviation of the difference scattering intensity at ith q of jth time delay. The 

structural parameters obtained in this way show oscillatory features in terms of time. Such 

oscillations cannot be justified with the current IRF and signal-to-noise ratio even if structural 

parameters indeed have temporal oscillations. We suspected that the temporal oscillations of 

structural parameters are artifact caused by use of a polynomial function. To remove the artifact, 

we applied penalties to parameters that inverted the sign of the first derivative. We minimized a 

sum of following penalty term (P) and χ2
red instead of χ2

red alone. 

where α, which is set to be 100, is a constant weighting factor, xi is the i-th structural parameter 

belonging to the subset C in which the sign of the first derivative of the parameter changes, tj is 

the j-th time delay, (∂xi/∂t)t = tj
 is the value at t = tj of the first derivative of xi with respect to t, and 

max[(∂xi/∂t)] is the maximum value of the first derivative of xi with respect to t.  The value of this 

penalty term increases when the temporal profiles of structural parameters have more oscillatory 

features. Consequently, the addition of the penalty term smooths the resulting temporal profiles of 

structural parameters. 

Finally, the resultant ΔStheory(q, t < 175 fs) was concatenated with ΔStheory(q, t ≥ 175 fs), giving 

rise to ΔStheory as shown in Fig. 2b, Supplementary Fig. 7 and Supplementary Fig. 18. The 

optimized x(t) values were concatenated with the corresponding parameters which were used to 

calculate the solute signal of ΔStheory(q, t ≥ 175 fs) and are represented in Fig. 5 and Supplementary 

Fig. 12. The standard deviations for the structural parameters and σ of the DWF at t < 175 fs were 
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calculated based on the covariance matrix, which was calculated during the fit of the coefficients 

of quartic polynomials using the following equation 

4 4 4
2 4 2 4 4
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x t k i j

k i j i

t a t t a a − − −

− − −
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where σx(t) is the standard deviation of the parameter x at time delay t, Var(a4₋k) is the variance of 

the coefficient a4₋k and Cov(a4₋i, a4₋j) is the covariance between the coefficients a4₋i and a4₋j. We 

note that, in most cases, the standard deviations obtained at t < 175 fs are relatively small compared 

to those of at t ≥ 175 fs because of the involvement of additional penalty term as well as the 

globally constrained parameters over several time delays, rather than a specific time delay, for the 

analysis at t < 175 fs. 

 

8. Computational details of quantum and DFT calculations  

The geometry optimization and subsequent harmonic vibrational frequency calculation of BiI3 (C3v) 

using the coupled-cluster singles and doubles with perturbative triples (CCSD(T)). The scalar 

relativistic effects of Bi and I were treated using the relativistic effective core potential (RECP). 

The triple-ζ basis sets (aug-cc-pVTZ) were used for the valence electrons of Bi and I. This 

combination is denoted as AVTZ. The solvent (acetonitrile) effect was considered using the 

integral equation formalism polarizable continuum model (IEFPCM).  

The multi-state complete active space perturbation theory second-order (MS-CASPT2) 

calculations were performed on the optimized structure of BiI3 using CCSD(T)/AVTZ. The ANO-

RCC-VTZP all-electron basis sets were used for Bi and I. The scalar relativistic effects were 

treated using the Douglas-Kroll-Hess second-order (DKH2) approach. The conductor-like PCM 

(CPCM) model was used for the solvent effect. The state-average CAS self-consistent field (SA-

CASSCF) method was used for the reference wave functions of BiI3. The active orbitals for the 

SA-CASSCF calculations consist of 6p and 5p orbitals of Bi and I, respectively. Therefore, 18 

electrons were distributed in 12 orbitals, CAS(18,12). The 7 singlet and 9 triplet states were 

averaged in the SA-CAS(18,12) calculations. The spin-orbit coupling (SOC) was considered using 

the state-interaction approach with the MS-CASPT2 calculations. According to the results of MS-

CASPT2+SOC calculations (see Supplementary Table 1), we can conclude that the T1 state of BiI3 

(C3V) is directly populated on the Franck-Condon (FC) region from 400 nm irradiation in the 

experiment. Therefore, the intrinsic reaction coordinate (IRC) method for the T1 state of BiI3 (C3V) 



 

 

S17 

 

was used to examine the relaxation pathway from the FC region. The IRC calculations were 

performed using CAM-B3LYP with the empirical dispersion correction (D3BJ, Grimme’s 

dispersion with Becke-Johnson damping). The solvent effect was also considered using the 

IEFPCM method as in the CCSD(T) calculations. In the CAM-B3LYP-D3BJ calculations, the dhf-

TZVPP basis sets were used for both Bi and I atoms. The dhf-TZVPP consists of RECPs which is 

the same as those of aug-cc-pVTZ-pp for Bi and I and segment contracted triple-ζ basis sets for 

valence electrons of Bi and I. The geometry optimization of the T1 state of early isomer of BiI3 

was performed using CAM-B3LYP-D3BJ/dhf-TZVPP from the final structure of IRC calculations. 

All DFT and CCSD(T) calculations were performed using the Gaussian16 program and MS-

CASPT2 with SOC calculations were performed using the Molcas8.0 program. 

 

Supplementary Notes 

Supplementary Note 1: Root-mean-squared displacement (σ) for the atomic pairs containing 

Ic of the early isomer 

To check the possible effect of σ on the structure of the early isomer, we also analyzed the data by 

including DWFs on the structure of the early isomer. Since the position of partially dissociated 

iodine, Ic, is expected to have a distribution, we applied DWFs with a shared σ to the atomic pairs 

containing I(c) of the early isomer. Following the same procedures introduced in section 3 but 

including the σ for the early isomer as another free-parameter, we performed global fit analysis on 

ΔSiso’(q, t). The fitting results show that the value of σ converges to zero, giving the same kinetics 

and equilibrium structure shown in Fig. 4. Thus, the equilibrium structure of the early isomer has 

a fairly well-defined structure within our error ranges of structural parameters. To further check 

the effect of σ on the early time structural motions of the early isomer, we also performed structure 

refinement on ΔSiso(q, t) up to 600 fs, following the procedures in section 4 with including DWFs 

with a shared σ to the atomic pairs containing Ic of the early isomer. The fit results at each time 

delay provide σ values varying around 0.1 Å . This value is comparable to the error range for the 

structural parameters that can modulate those atomic pairs. The Bi-Ib-Ic angle, for example, has an 

error range of about ±3 degrees. When the Bi-Ib-Ic angle is changed by 3 degrees, the pair distances 

containing Ic are altered by ~0.14 Å , which covers comparably wider distance distributions to those 

generated based on the obtained σ.  
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Thus, the distributions in pair distances during the roaming reaction of BiI3 might be wide, 

but they are in the comparable range with the structural error range of our signal. Therefore, we 

conclude that the effect of σ on the structural dynamics of the early isomer is negligible under the 

structural and temporal resolution of our experiment. 

 

Supplementary Note 2: Simulation to check the effect of IRF on structural analysis of 

ΔSiso(q, t < 175 fs) 

Directly fitting the difference scattering signals at the time delays shorter than the temporal width 

of IRF results in distorted structural information, as shown in Supplementary Fig. 19. In 

Supplementary Fig. 19, we generated mock data of a virtual diatomic molecule whose bond length 

undergoes an elongation from 2.816 Å  to 3.616 Å  following a sum of two exponential growth 

functions whose time constants are 50 fs and 150 fs, respectively. The mock data of instantaneous 

signals, qΔSinst, are shown in Supplementary Fig. 19a and are convoluted with a Gaussian IRF 

whose FWHM is 162 fs to make the temporally blurred signals, qΔSconv shown in Supplementary 

Fig. 19b. The qΔSconv was directly fit using the Debye equation at each time delay independently 

and the fit result is shown in Supplementary Fig. 19c. This mode of data analysis corresponds to 

the one used to fit the data of ΔSiso(q, t ≥ 175 fs). The resultant bond length, rfit(t) is shown in 

Supplementary Fig. 19d and is compared to the true bond length, rtrue(t), used for generating the 

mock data. While the general trends of the bond elongation are captured by the fit, the rfit(t) do not 

correctly reproduce neither the rtrue(t) nor the IRF convoluted rtrue(t). In particular, rfit(t) shows a 

significant discrepancy at the time delays shorter than the temporal width of the IRF. In 

Supplementary Fig. 19e, Bi-Ib-Ic angle Ia-Bi-Ib-Ic dihedral angle, which are obtained from fitting 

ΔSiso using the same analysis method used for fitting ΔSiso(q, t ≥ 175 fs), are shown as an example. 

The two angles evolve in a similar fashion to those shown in Fig. 5a, but the temporal profiles in 

Supplementary Fig. 19e are distorted as in the case of the mock data.  
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Supplementary Fig. 1. Sensitivity maps for the atomic positions of (a) BiI3, (b) PBr3, and (c) 

CHI2. The TRXL signal is more sensitive to the position of the atom with the larger sphere. The 

sensitivity of the solute-solvent cage term is shown by the spheres surrounded by the dotted circle 

and labeled with “Acetonitrile”. Each sensitivity map is obtained by evaluating the change of the 

TRXL signal upon altering the position of each atom constituting the molecule. The size of the 

sphere is normalized by that of the Bi atom of BiI3, which is the most sensitive atom among the 

atoms in the three molecules shown here. Also, the thickness of the line is normalized by that of 

Bi···Ic pair of BiI3, which is the most sensitive pair distances among the atomic pair distances in 

the three molecules shown here. The TRXL signals were simulated by assuming a ground state 

molecule having C3v symmetry and an excited state molecule with the identical structure to the 

early isomer of BiI3 in Fig. 3c. Thus, except the structure of BiI3, those of other molecules are 

artificially devised for the purpose of a fair comparison. This figure visualizes that (i) the relative 

sensitivity to BiI3 is drastically larger than to other molecules and (ii) the contribution from the 

solute-solvent cage term is negligible for all cases. 
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Supplementary Fig. 2. Raw 2D difference scattering images at representative time delays. 
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Supplementary Fig. 3. Comparison of the SVD results of the ΔSaniso(q, t) from the BiI3 solution 

and the dye solution. (a, b) The singular values and the autocorrelation values for RSVs and LSVs 

obtained through SVD of ΔSaniiso(q, t) of (a) BiI3 solution and (b) azobenzene dye solution. In both 

cases, the singular values and autocorrelation values indicate that up to two singular value 

components are contributing significantly to the signal. (c, d) Plots of the first two (c) left singular 

vectors (LSVs) and (d) right singular vectors (RSVs) for BiI3 solution (solid lines) and azobenzene 

dye solution (circles).  
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Supplementary Fig. 4. A schematic illustration of the procedures of data processing. 
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Supplementary Fig. 5. (a) The first five right singular vectors (RSVs) weighted by the 

corresponding singular values. (b) The first five left singular vectors (LSVs). (c) The singular 

values, and the autocorrelation values for RSVs and LSVs obtained through SVD of ΔSiso(q, t) of 

BiI3 solution. The singular values and autocorrelation values indicate that up to four singular value 

components are contributing significantly to the signal.   
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Supplementary Fig. 6. Fits of RSV1 and RSV2 using a sum of (a) four and (b) three exponential 

functions convoluted with a Gaussian IRF. 
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Supplementary Fig. 7. Fit results for the ΔSiso(q, t) of the BiI3 solution. Experimental curves and 

the theoretical curves are shown in black and red lines, respectively. 
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Supplementary Fig. 8. Linear combination fit (red) on ΔSiso’(q, 1 ps) (black) using the scattering 

curves of (BiI2 + I) and iso-BiI2-I and the solvent heating curve, (∂S(q)/∂ρ)T. The blue line shows 

the residue obtained by subtracting the fit curve from the experimental scattering curve. 
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Supplementary Fig. 9. Kinetic model frames used in the global analysis. G and FC denote the 

BiI3 at the ground state and Franck-Condon state, respectively. 
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Supplementary Fig. 10. The time evolution of solvent temperature obtained from GFA (solid red 

line) and linear combination fits (open circle with one-standard-deviation error bars) of ΔSiso’(q, 

t). The solvent heat component in the linear combination fit was used as a free parameter up to 2 

ps and then fixed to the global fit result. 
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Supplementary Fig. 11. The optimized structure of the early isomer in the global fit analysis 

(experiment) is compared with the DFT-optimized structure of the early isomer using CAM-

B3LYP/dhf-TZVPP. Green and purple spheres stand for Bi and I atoms, respectively, and three I 

atoms are labeled with a, b, and c.  
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Supplementary Fig. 12. (a) The mean values of the structural parameters for the BiI3 undergoing 

isomerization. Angles and distances are shown in the top and bottom panels, respectively. In the 

top panel, the Bi-Ib-Ic angle, the Ia-Bi-Ib angle, and the Ia-Bi-Ib-Ic dihedral angle (ϕ) are shown in 

blue, green and red circles, respectively, with the corresponding standard deviations as error bars. 

In the bottom panel, the Bi-Ia (or Ib) and Ib···Ic distances are shown in magenta and blue circles, 

respectively, with the corresponding standard deviations as error bars. (b) The mean values of the 

structural parameters for the dissociating BiI3. The Bi-Ia (or Ib) bond length, Bi···Ic distances, and 

Ia-Bi-Ib angle are plotted in green, black, and magenta squares, respectively, with the 

corresponding standard deviations as error bars. For the Bi···Ic distance, the root-mean-squared 

distance obtained from the Debye-Waller factor is shown together in red error bars. The error bars 

of structural parameters in (a) and (b) at time delays earlier than 200 fs are one-standard-deviation 

error values calculated from the covariance matrix of the coefficients of quartic polynomials used 

to model the parameters during the structural fit analysis. The error bars of structural parameters 

in (a) and (b) at time delays later than 175 fs is the averaged one-standard-deviation obtained from 

the error values of the optimized geometries, which scored less than 1.00001 times the minimum 

χ2
red (t) obtained from the fit based on ~5000 random structures for each time delay.  
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Supplementary Fig. 13. (a) The first right singular vector (RSV1) and the residue obtained by 

subtracting the exponential fit from the RSV1 are shown in black and blue dots, respectively. Red 

solid curves on the RSV1 and the residue are the fit curves using exponential and sine functions, 

respectively. (b) The temporal profile of Ia-Bi-Ib angle of BiI2 that best represents the oscillating 

signal in the RSV1 is shown in black dots. The oscillating residue signal and the fit are plotted in 

blue dots and solid red line together. 
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Supplementary Fig. 14. Normal modes of the (a) BiI2 and (b) early isomer of BiI3, obtained from 

CAM-B3LYP/dhf-TZVPP. Displacement vectors of each normal mode are shown in blue arrows. 
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Supplementary Fig. 15. A complete kinetic scheme of the photodynamics of BiI3 in acetonitrile 

from 0 fs to 1 μs determined by TRXL. 
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Supplementary Fig. 16. Comparison of the data at a common time delay (100 ps) measured at 

ESRF and PAL-XFEL. The error bars are one standard-deviation of the mean of the measured 

signals. 
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Supplementary Fig. 17. Comparison of raw ΔSiso(q, t), SVD-filtered ΔSiso(q, t) where the 3rd SV 

was removed (middle), and SVD-filtered ΔSiso(q, t) where the 3rd and 4th SVs were removed (right). 

Peak shifts in the early time (up to 500 fs) over the entire q-range disappear when both 3rd and 4th 

singular vectors are filtered out. All plots share a color scale representing the amplitude of the 

signal in an arbitrary unit. 
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Supplementary Fig. 18. Extraction of the signals for exponential kinetics from the experimental 

ΔSiso(q, t) (top panels). The corresponding fit results are shown together in the bottom panels. 

Residue curves of both experimental and theoretical curves are obtained by subtracting ΔSiso’(q, t) 

and ΔStheory’(q, t) from ΔSiso(q, t) and ΔStheory(q, t), respectively. All plots share a color scale 

representing the amplitude of the signal in absolute electronic units per solvent molecule. 
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Supplementary Fig. 19. Mock data analysis for testing the effect of the IRF. (a) Instantaneous 

mock difference scattering signals, qΔSinst, of a hypothetical diatomic molecule undergoing a bond 

elongation from 2.816 Å  to 3.616 Å  following a sum of two exponential growth functions whose 

time constants are 50 fs and 150 fs, respectively. (b) IRF-convoluted mock data, qΔSconv. (c) 

Theoretical fit on qΔSconv. Color scales in (a), (b), and (c) represent the amplitude of the signal in 

an arbitrary unit. (d) The temporal profile of the bond length, rtrue(t), used to generate qΔSinst, the 

IRF-convoluted rtrue(t), and the bond length obtained from the fit on qΔSconv, rfit(t), in green 

triangles, red squares and black circles, respectively. The temporal profile of the instantaneous 

excited state concentration of the hypothetical diatomic molecule that was used to construct qΔSinst 

and the IRF-convoluted excited state concentration that was used to fit the qΔSconv. are shown in 

magenta squares and circles, respectively. (e) The temporal profiles of the Bi-Ib-Ic angle and Ia-Bi-

Ib-Ic dihedral angle of BiI3, which are obtained from directly fitting ΔSiso(q, t) of BiI3 solution. The 

error bars are the one-standard-deviation error values obtained from averaging the optimized 

geometries, which scored less than 1.01 times the minimum χ2
red (t) obtained from the fit based on 

~1850 random structures for each time delay.   
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Supplementary Table 1. 

Excitation energies (in nm) of BiI3 calculated by MS-CASPT2+SOC/ANO-RCC-VTZP with the 

CPCM method. aValues in parentheses are oscillator strengths. 

 

 

 

  

Excitation energiesa Composition of spin-free states 

413 nm (0.1810-2) S4(29.0%) T5(26.7%) T6(26.2%) S2(5.0%) 

403 nm (0.1110-3) T1(45.1%) T3(29.8%) T7(6.7%) 

402 nm (0.1510-3) T1(38.7%) T2(19.8%) T4(15.9%) T3(7.8%) 

383 nm (0.3310-3) T3(41.3%) T2(18.9%) T4(16.0%) S5(5.8%) 



 

 

S39 

 

1. References 

1. Ko, I. S. et al. Construction and Commissioning of PAL-XFEL Facility. Appl. Sci. 7, doi:Artn 

47910.3390/App7050479 (2017). 

2. Kang, H. S. et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. 

Photonics 11, 708-713, doi:10.1038/s41566-017-0029-8 (2017). 

3. Ki, H. et al. SVD-aided non-orthogonal decomposition (SANOD) method to exploit prior 

knowledge of spectral components in the analysis of time-resolved data. Struct. Dyn. 6, 

doi:Artn 02430310.1063/1.5085864 (2019). 

4. Lorenz, U., Møller, K. B. & Henriksen, N. E. On the interpretation of time-resolved 

anisotropic diffraction patterns. New J. Phys. 12, 113022, doi:10.1088/1367-

2630/12/11/113022 (2010). 

5. Biasin, E. et al. Anisotropy enhanced X-ray scattering from solvated transition metal 

complexes. J. Synchrotron Radiat. 25, 306-315, doi:10.1107/S1600577517016964 (2018). 

6. Choi, E. H. et al. Structural Dynamics of Bismuth Triiodide in Solution Triggered by 

Photoinduced Ligand-to-Metal Charge Transfer. J. Phys. Chem. Lett. 10, 1279-1285, 

doi:10.1021/acs.jpclett.9b00365 (2019). 

7. James, F. & Roos, M. Minuit - System for Function Minimization and Analysis of Parameter 

Errors and Correlations. Comput. Phys. Commun. 10, 343-367, doi:Doi 10.1016/0010-

4655(75)90039-9 (1975). 

8. Kim, T. K. et al. Spatiotemporal Kinetics in Solution Studied by Time-Resolved X-Ray 

Liquidography (Solution Scattering). ChemPhysChem 10, 1958-1980, 

doi:10.1002/cphc.200900154 (2009). 

9. Refson, K. Moldy: a portable molecular dynamics simulation program for serial and parallel 

computers. Comput. Phys. Commun. 126, 310-329, doi:Doi 10.1016/S0010-4655(99)00496-8 

(2000). 

10. Cammarata, M. et al. Impulsive solvent heating probed by picosecond x-ray diffraction. J. 

Chem. Phys. 124, doi:Artn 12450410.1063/1.2176617 (2006). 

11. Kjaer, K. S. et al. Introducing a standard method for experimental determination of the solvent 

response in laser pump, X-ray probe time-resolved wide-angle X-ray scattering experiments 

on systems in solution. Phys. Chem. Chem. Phys. 15, 15003-15016, doi:10.1039/c3cp50751c 

(2013) 


