Supporting Information

Relaxation Dynamics of Enhanced Hot-Electron Flow on Perovskite-Coupled Plasmonic Silver Schottky Nanodiodes

Yujin Park^{1,2†}, Jungkweon Choi^{1,2,3†}, Mincheol Kang^{1,2}, Hyunhwa Lee^{1,2}, Hyotcherl Ihee^{1,2,3*} and Jeong Young Park^{1,2*}

¹Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

²Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea

³KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

[†]Y. P. and J. C. contributed equally to this work.

*Author to whom correspondence should be addressed. E-mail: hyotcherl.ihee@kaist.ac.kr, jeongypark@kaist.ac.kr

Figure S1. Thicknesses of MAPbI₃ thin-film according to the deposition of different concentrations of MAPbI₃ precursor ink.

Figure S2. The STEM-EDS elemental mapping images represent (a) Ti, (b) Ag, (c) Pb, and (d) I. Scale bars are 100 nm.

Figure S3. Current-voltage characteristics measured on the MAPbI3-modified Ag nanodiodes. The fits from the thermionic emission model are described with solid black lines.

The Schottky barrier heights can be acquired experimentally by fitting an obtained I-V curve with the thermionic emission equation,¹

$$I = AA^{**}T^2 exp\left(-\frac{eE_{SB}}{k_bT}\right) \left[exp\left(\frac{q(V - IR_{ser})}{\eta k_bT} - 1\right)\right]$$
(1)

where A is the area of Schottky contact, A^{**} is the Richardson constant, e is the elementary charge, E_{SB} is the Schottky barrier height, k_b is the Boltzmann constant, T is the temperature, R_{ser} is the series resistance, and η is the ideality factor. The acquired parameters are listed in Table S1.

Figure S4. (a) AFM image of the pristine Ag/TiO₂ nanodiode (top) and the corresponding height profile along green dashed line (bottom). The 40 nm thick Ag film on the TiO₂ layer has an RMS roughness of 5.2 nm. (b) AFM topography image of the pristine 40 nm thick Ag film on the TiO₂ layer. Scale bar is 500 nm.

Figure S5. (a) IPCE results as a function of photon energy measured on a different Ag morphology. The surface SEM images of (b) a 25 nm Ag film and (c) an annealed 25 nm Ag film are represented. Scale bars are 250 nm.

Figure S6. (a) Absorption spectrum measured on a bare TiO₂ and Ag/TiO₂ structure.

E _{SB} (eV)	$R_{ser}\left(\Omega ight)$	η
0.64	495	3.1
0.6	607	2.86
0.63	525	2.42
0.58	574	2.65
	E _{SB} (eV) 0.64 0.6 0.63 0.58	E_{SB} (eV) R_{ser} (Ω)0.644950.66070.635250.58574

Table S1. Summary of parameters obtained by fitting measured current-voltage curves to the thermionic emission equation.

Reference

1. Sze, S. M.; Ng, K. K., *Physics of Semiconductor Devices*, 3rd ed.; Wiley-Interscience: Hoboken, N.J., 2007.