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1. Generation of time-resolved difference scattering curves 

Two-dimensional scattering images recorded on the CCD detector were azimuthally 

averaged to give one-dimensional scattering curves, S(q,t), as a function of momentum 

transfer, q, and time delay, t, between the laser and x-ray pulses. Time-resolved difference 

scattering curves, ΔS(q,t), were generated by subtracting the reference data measured at –20 

ps from the data at other time delays. The two-dimensional scattering images can in 

principle have anisotropic component arising from the anisotropic orientational distribution 

of excited molecules. The difference scattering intensity of a two-dimensional difference 

scattering image can be decomposed as 

0 2 2( , , ) ( , ) (cos ) ( , )S t S t P S t     
q q

q q q                                                                   (S1) 

where, q  is the scattering vector, q  is the angle between the laser polarization axis and q , 

0( , )S t q  and 2( , )S t q  are the isotropic and anisotropic difference scattering intensities, and 

P2 is the second-order Legendre polynomial. From the linear relation between ( , , )S t
q

q

and 2 (cos )P 
q , 0( , )S t q  and 2( , )S t q  can be extracted. ( , , )S t

q
q  were plotted with 

respect to 2 (cos )P 
q  for a specific q  value, then the data points were fit by a straight line. 

According to Eq. (S1), the intercept with the P2 = 0 axis and the slope of the fit line are the 

isotropic scattering intensity, 0S , and the anisotropic scattering intensity, 2S , respectively. 

It can be seen that the azimuthally-averaged difference scattering curves and the isotropic 

scattering curves, 0S , are identical to each other within experimental errors (Fig. S1). Thus, 

in this work, we used the azimuthally-averaged difference scattering curves, rather than 

isotropic difference scattering curves, without the need of correcting the anisotropic 

contribution. 
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2. Determination of equilibrium structures of S0, T1’, and T1 states 

As described in Methods, we eliminated the exponential components from ΔS(q,t) to 

extract ΔSresidual(q,t). Those exponential components, termed as ΔS’(q,t), consist of 

ΔStransit(q,t) and ΔSheat(q,t) as can be seen in Eq. (2) in Methods. We refined the equilibrium 

structures of S0, T1’, and T1 states based on ΔS’(q,t). To refine the equilibrium structures, 

theoretical difference scattering intensities, ΔStheory’(q,t), were constructed using Eqs. (2) – 

(4) in Methods as follows: 

1 11 0 1 0

'

' '
( , ) ( )( ( ) ( )) ( )( ( ) ( )) ( ) ( )eq eq eq eqtheory T T heatT S T S

S q t c t S q S q c t S q S q S q T t             (S2) 

where ( )T t  is temperature change at each time delay, and ΔSheat(q) represents scattering 

intensity change with respect to the increase of solvent temperature. 

As fitting parameters of the analysis, we considered two adjacent Au–Au distances 

(RAB and RBC), and a bond angle (Au–Au–Au angle) for the S0, T1’, and T1 states, a scaling 

factor between the experimental and theoretical scattering intensities, and temperature 

change, ( )T t . ΔSheat(q) was determined from a separate TRXL experiment on 40 mM 

FeCl3 solution to measure the difference scattering signal arising purely from solvent heating, 

as shown in Extended Data Fig. 8a. The experimental difference scattering curves of FeCl3 

solution were obtained at time delays from –740 fs to 2260 fs with a time step of 25 fs. As 

can be seen in the results of the SVD analysis on the TRXL data of FeCl3 solution shown in 

Extended Data Figs. 8b and 8c, only one significant singular component was identified, 

indicating that a single difference scattering curve (that is, the first lSV) can account for the 

contribution of solvent heating at the measured time delays. Thus, the first lSV was used as 

ΔSheat(q). 

Scattering intensity arising from a molecular structure was calculated using the 

following Debye equation, 

2 2 sin( ) sin( )sin( )
( ) 3 ( ) 2 ( ) BC ACAB

Au Au
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S q F q F q

qR qR qR
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where FAu(q) is the atomic form factor of the Au atom. The maximum likelihood estimation 

(MLE) with the χ
2
 estimator was employed to minimize the discrepancy between ΔS’(q,t) 

and ΔStheory’(q,t). The chi-square (χ
2
) is given by the following equation: 

' ' 2

2

2

( ( , ) ( , ))1

1

q t
n n

s theory i j i j

i jq t ij

c S q t S q t

n n p




 


 
                       (S4) 

where nq is the number of fitted q points, nt is the number of fitted time delays, p is the 

number of fitting parameters, σij is the standard deviation, and cs is the scaling factor 

between theoretical and experimental difference curves. The minimization was performed 

by the MINUIT software package and the error values were provided by MINOS algorithm 

in MINUIT.  

For S0 and T1’, Debye-Waller factors (DWFs) were introduced to consider 

distributions of interatomic distances arising from the weak Au–Au bonding in S0 and the 

spatial broadening of the initially created wave packet, which is induced by finite pulse 

duration of the pump pulse, on the PES of T1’, respectively. In contrast, DWFs for T1 were 

not used for the fitting since it did not improve the fitting quality any further. We note that 

DWFs were used in the structural analysis to describe the ensemble of heterogeneous Au-Au 

distances although DWFs are commonly used to describe the time-averaged distribution of 

interatomic distances due to thermal fluctuation. When including the DWFs, Eq. (S3) is 

modified as follows. 
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         (S5)  

where σ1
2
  is the mean-squared displacement for RAB and RBC and σ2

2
 is the mean-squared 

displacement for RAC. 

Following the results of the previous TRXL study on [Au(CN)2
–
]3

9
, it was assumed 

that T1’ and T1 have linear and symmetric structures (that is, RAB = RBC = 2.82 Å  for T1’ and 

RAB = RBC = 2.71 Å  for T1). In contrast, in the previous TRXL study, the equilibrium 

structure of S0 was not clearly determined, whether it is symmetric or asymmetric. Since a 

better signal-to-noise ratio was achieved in the TRXL data presented in this work, we were 

able to determine the structure of S0. In the previous TRXL study
9
, both asymmetric and 
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symmetric equilibrium structures of S0 gave equivalently good fits to the experimental data 

when appropriate DWFs were used. In this work, the exponential components, ΔS’(q,t), are 

also fit equally well with both symmetric and asymmetric structures of S0. The refined 

structural parameters obtained from the fitting of ΔS’(q,t) are listed in Table S1. However, as 

discussed in Methods, structural analysis using residual difference scattering curves reveals 

that the asymmetric equilibrium structure of S0 gives much better fits to the residual 

difference scattering curves, confirming that the equilibrium structure of S0 is asymmetric. 

 

3. Assignment of activated vibrational modes of the wave packet 

To identify the origin of the oscillations observed in qΔSresidual(q,t), we inspected the 

structural changes of [Au(CN)2
–
]3 in S0 and T1’. In Section “Structural analysis using 

residual difference scattering curves” of Methods, we showed that the excited-state wave 

packet in T1’ exhibits only symmetric stretching vibrations, allowing us to approximate the 

transient structure of T1’ as symmetric and linear (RAB = RBC, θ = 180 °) at all time delays. 

To assign the symmetric stretching vibrations to specific vibrational normal modes of T1’, 

we fitted time-dependent Au–Au distances, RAB(t), RBC(t), and RAC(t), of T1’, which was 

determined by the structural analysis, using a sum of damping cosine functions. Specifically, 

time-dependent Au–Au distances were described by a sum of damping cosine functions, 

( )thy

ABR t , ( )thy

BCR t , and ( )thy

ACR t  as follows: 

1 '
( ) cos(2 )exp( / )
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      







                                                   (S6) 

where 1 'eqT

ABR  is the RAB in the equilibrium structure of T1’, Ai, νi, i , and τi are the 

amplitude, frequency, phase, and damping constant of a damping cosine function, 

respectively, and n is the number of damping cosine functions used for the fitting. The 

discrepancy, Δ, between the experimentally-resolved Au–Au distances of T1’, RAB(t), RBC(t), 

and RAC(t), and the theoretical Au–Au distances described by the damping cosine functions, 

( )thy

ABR t , ( )thy

BCR t , and ( )thy

ACR t , is defined by the following equation: 
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2 2 2{ ( ) ( )} { ( ) ( )} { ( ) ( )}

tn
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i

R t R t R t R t R t R t                          (S7) 

where nt is the number of fitted time delays. For the fitting, Δ was minimized by adjusting 

fitting parameters (Ai, i , and τi). In this fitting, the frequencies, νi, of the damping cosine 

functions were chosen from the frequencies of three peaks identified in the Fourier spectrum 

in Fig. 4c (32 cm
-1

, 79 cm
-1

, and 125 cm
-1

). Initially, the fitting was tried with a single 

damping cosine function (that is, n = 1 in Eq. (S6)) by selecting one oscillating frequency 

from the three Fourier frequencies, 32 cm
-1

, 79 cm
-1

 and 125 cm
-1

. In this case, the 

experimentally resolved interatomic Au–Au distances of T1’ are not fit satisfactorily. Then, 

we tried the fitting using two damping cosine functions (that is, n = 2 in Eq. (S6)) by 

selecting two oscillating frequencies from the three Fourier frequencies, 32 cm
-1

, 79 cm
-1

, 

and 125 cm
-1

. The damping cosine functions of 79 cm
-1

 and 125 cm
-1

 frequencies give 

satisfactory fits to the RAB(t), RBC(t), and RAC(t), of T1’, as shown in Fig. 2c. Therefore, the 

symmetric stretching vibrations of T1’ correspond to two symmetric stretching modes with 

the 79 cm
–1

 and 125 cm
–1

 frequencies. 

To relate those experimentally identified vibrational modes with theoretical normal 

modes, we examined the normal modes of a triplet state obtained from DFT calculation, as 

shown in Extended Data Fig. 6. Among the theoretical normal modes of the triplet state, 

there are two symmetric stretching modes, T1_#6 (63 cm
–1

) and T1_#12 (92 cm
–1

). Therefore, 

we assigned the two oscillations of 79 cm
–1

 and 125 cm
–1

 frequencies observed in TRXL 

data to T1_#6 and T1_#12 modes of the excited state, T1’, respectively.  

Similarly, for S0, we tried to fit time-dependent Au–Au distances, RAB(t), RBC(t), 

and RAC(t), of S0 by a sum of damping cosine functions. Among the three Fourier 

frequencies,  the 79 cm
–1

 and 125 cm
–1

 frequencies were assigned to the excited-state wave 

packets in T1’, leaving only the 32 cm
-1

 frequency unassigned. However, the time dependent 

Au–Au distances of S0 shown in Fig. 2e were not fit satisfactorily using a single damping 

cosine function with 32 cm
-1

 frequency. Thus, we performed another type of fitting analysis 

to identify the ground-state wave packets created in S0 as follows. In principle, the time-

dependent Au–Au distances of S0 can be described by a combination of normal modes 

obtained from DFT calculation for S0, of which the displacement vectors are shown in 
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Extended Data Fig. 5. In detail, the time-dependent Au–Au distances, RAB(t), RBC(t), and 

RAC(t), of S0 were fit by theoretical Au–Au distances that were constructed with a 

combination of displacement vectors of candidate normal modes.  

To calculate the theoretical Au–Au distances described by the normal mode 

vibrations, ( )NM

ABR t , ( )NM

BCR t , and ( )NM

ACR t , we assumed that the structure of S0 vibrates 

following the displacement vectors of candidate normal modes and each normal mode was 

modeled to damp exponentially. Accordingly, time-dependent molecular structure of S0 at a 

time delay, t, was described as follows, 

0 0

( ) cos(2 )exp( / )eq
i i i i i

N
NM

S NM NM NM NM NMS
i

R t R D A ct t                                         (S8) 

where 
0

( )NM

SR t  and 
0
eqS

R  are 3 3 matrices whose row vectors are three-dimensional 

coordinates that indicate the positions of the three Au atoms at t and in the equilibrium 

structure of S0, respectively, 
iNMD is a 3 3  matrix whose row vectors are three-dimensional 

displacement vectors of the three Au atoms for each normal mode, 
iNMA  is the scaling factor 

for the vibrational amplitude of each mode, 
iNM  is the oscillating frequency of each mode, 

iNM  is the phase of each mode, 
iNM  is the damping time constant of each mode, c is the 

speed of light, and N is the number of normal modes used for the fitting. Using the three-

dimensional coordinates of Au atoms in a transient molecular structure of S0, 0
( )NM

SR t , 

described by Eq. (S8), Au–Au distances changed by normal mode vibrations, ( )NM

ABR t , 

( )NM

BCR t , and ( )NM

ACR t , were calculated.  

The discrepancy, Δ’, between the experimentally-resolved Au–Au distances of S0, 

RAB(t), RBC(t), and RAC(t), shown in Fig. 2e and the theoretical Au–Au distances described 

by the normal mode vibrations, ( )NM

ABR t , ( )NM

BCR t , and ( )NM

ACR t , is defined by the following 

equation: 

2 2 2' { ( ) ( )} { ( ) ( )} { ( ) ( )}
tn

NM NM NM

AB i AB i BC i BC i AC i AC i

i

R t R t R t R t R t R t                    (S9)  
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where nt is the number of fitted time delays. For the fitting, Δ’ was minimized by adjusting 

fitting parameters (
iNMA , 

iNM , 
iNM , and 

iNM ). We note that, in this fitting analysis for the 

ground-state wave packet motion, a theoretical vibrational motion of each normal mode 

determined by displacement vectors was used intactly, whereas a vibrational frequency of 

each normal mode was adjusted as a fitting parameter.  

First, we tried this fitting analysis for the ground-state wave packet motion using a 

single mode among the normal modes of S0 shown in Extended Data Fig. 5 (N = 1 in Eq. 

(S8)), and we found that the experimentally resolved interatomic Au–Au distances, RAB(t), 

RBC(t), and RAC(t), of S0 cannot be fit decently by any single normal mode. Then, we 

performed the fitting using two normal modes of S0 (N = 2 in Eq. (S8)). Among all the 

possible combinations, the best fits to RAB(t), RBC(t), and RAC(t) of S0 were obtained when 

using a symmetric stretching mode (S0_#6) and an asymmetric stretching mode (S0_#5), of 

which the oscillation frequencies were determined to be 32 cm
-1

 and  44 cm
-1

, respectively, 

from the fitting (Fig. 2e). Thus, we concluded that a symmetric stretching mode with 32 cm
-1

 

frequency and an asymmetric stretching mode with 44 cm
-1

 frequency are the active ground-

state wave packets in S0. 

 

4. Assignment of electronic states 

In transient absorption (TA)
17

 and time-resolved luminescence studies
18

 on 

[Au(CN)2
–
]3, an additional kinetic component with a time constant of 500 fs and ~20 fs, 

respectively, were observed and assigned to the intersystem crossing (ISC) from the initially 

excited singlet state (S1) to a triplet excited state, but that component was not observed by 

TRXL
9
, suggesting that the intersystem crossing does not involve any significant structural 

change. Considering the similar structures of the excited singlet and triplet states and the 

sensitivity of spectroscopic signal to the population of electronic states, the initially excited 

state identified by TRXL can be practically considered as the triplet state reached by ISC 

transition, as discussed in our previous publication
9
. We note that, in this work, the triplet 

excited state reached by ISC and another triplet excited state formed by subsequent bond 

contraction are termed T1’ and T1, respectively, following the notations in our previous 

publication
9
. On the contrary, those states were labeled as T1 and T1’, respectively, in the 

time-resolved luminescence study
18

. 
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5. Assignment of activated vibrational normal modes based on their frequencies 

The frequencies of the oscillations observed in qΔSresidual(q,t) were extracted from the 

Fourier power spectrum of qΔSresidual(q,t) in the late time range (> 360 fs). As shown in Fig. 

4c, the FT spectrum shows a major peak with the largest intensity at 32 cm
–1

 frequency, and 

minor peaks at 79 cm
–1

 and 125 cm
–1

 frequencies. First, we note that the four oscillation 

frequencies (79 cm
–1

 and 125 cm
–1

 for T1’, 32 cm
–1

 and 44 cm
–1

 for S0) were identified by 

inspecting time-dependent structural changes of the gold trimer complex, whereas only three 

oscillation frequencies were identified in the FT spectrum, indicating that the peak at 44 cm
–

1
 frequency is masked by the broad peaks at other frequencies. This observation indicates 

that the assignment of the molecular vibrations only based on the frequency information 

may mispredict the number of activated vibrational modes. Moreover, the oscillations can be 

assigned to irrelevant vibrational modes. For example, if one attempts to assign the vibration 

of 32 cm
–1

 frequency solely based on the frequency information, he will examine normal 

modes of S0 and T1 calculated by DFT calculations in a wide range of frequencies around 32 

cm
–1

 (for example from 20 cm
–1

 to 60 cm
–1

), considering the global sensitivity of TRXL 

signal to various electronic states and the limited accuracy of DFT calculation of vibrational 

frequencies. Among the normal modes of the two electronic states, there are a total of eleven 

normal modes (six and five normal modes for S0 and T1, respectively) with frequencies in 

the range of 20 – 60 cm
–1

 as shown in Fig. 4c. More details of these normal modes can be 

seen in Extended Data Figs. 5 and 6. Among the eleven modes, if one follows the normal 

practice to choose the normal mode with the most similar frequency as the 32 cm
–1

 

frequency, a bending mode of T1 with frequency of 33 cm
–1

 would be chosen. However, as 

revealed from the structural changes of T1’, the 32 cm
–1

 oscillation corresponds to the 

symmetric stretching mode of S0, not the bending mode of T1’. 

 

6. Initial motion of the ground-state wave packet in S0 

The ground-state wave packet moves in the direction of decreasing RAB and 

increasing θ within 100 fs, prior to returning toward the equilibrium structure of S0. Such 

initial motion of the ground-state wave packet occurs because it is affected by the initial 

motion of the excited-state wave packet. Since the optical pump pulse has a finite duration, 

the second interaction with the pump pulse for impulsive Raman scattering can occur with a 
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certain time delay (that is, non-impulsively) after the first interaction within the pulse 

duration (~100 fs). As a result, the second interaction with the pump pulse would occur after 

the evolution of wave packet in the excited state for the pulse duration and thus create the 

ground-state wave packet at a position off the equilibrium structure of the ground state, 

toward the direction of the excited-state wave packet motion. After 100 fs time delay, the 

effect of finite pulse duration would be saturated and the ground-state wave packet returns 

toward the equilibrium structure of S0. 

 

7. Contributions from carbon and nitrogen atoms and the cage term 

In the structural analysis presented in this work, we considered only three Au atoms 

to calculate the scattering intensity of the gold trimer complex because the contribution of 

CN
–
 ligands to the scattering intensity is negligible. A gold atom has much more electrons 

(79 electrons) than a carbon (6 electrons) or a nitrogen (7 electrons) atom and the number 

ratio of the gold atoms with respect to carbon and nitrogen atoms is rather large (1:2 for both 

carbon and nitrogen), so that the scattering intensity from gold atoms is expected to be much 

stronger than the scattering intensity from carbon or nitrogen atoms. We calculated the 

difference scattering curve from all the atoms in the gold trimer complex and compared it 

with the difference scattering curve from the three Au atoms and the results are shown in Fig. 

S2a. As expected based on the number of electrons in each atom and the number ratio, the 

scattering intensity from CN
–
 ligands is negligibly small compared with the scattering 

intensity from Au atoms. For comparison, we examined the effect of ligands on the 

scattering intensity in the cases of [Ir2(dimen)4]
2+

 and [Pt2(P2O5H2)4]
4-

, which were 

investigated in previous TRXL studies
11,12

. To generate difference scattering curves, we 

assumed a simple structural change of 1% size increase of [Ir2(dimen)4]
2+

 and 

[Pt2(P2O5H2)4]
4-

. To do so, we elongated the distances of all atomic pairs in the crystal 

structure by 1 % and calculated a difference scattering curve arising from the structural 

difference between the expanded structure and the crystal structure.  Difference scattering 

curves were calculated considering all the constituent atoms or only heavy atoms (two Ir 

atoms for [Ir2(dimen)4]
2+

 and two Pt atoms for [Pt2(P2O5H2)4]
4-

). As can be seen in Figs. S2b 

and S2c, the contributions of the ligands to the scattering intensity are no longer negligible, 

unlike the case of the gold trimer complex. 



 

10 

 

We also compared the contributions of the solute and the cage terms to the scattering 

intensity. The cage term was calculated from the pair distribution functions between solute 

and solvent molecules obtained from molecular dynamics simulations. As can be seen in Fig. 

S3, the total scattering intensity of the gold trimer complex is almost the same as the solute 

term and the contribution of the cage term is negligibly small, since the x-ray scattering 

factor of a gold atom is dominant compared with the scattering factors of hydrogen and 

oxygen atoms of the solvent molecule. Considering the negligible contributions of the 

ligands and the cage term to the scattering intensity, the gold trimer complex can be 

approximated as a triatomic molecule in terms of x-ray scattering signal.  

8. Prospect with LCLS-II HE for solute molecules without heavy atoms 

With the advance of XFEL technology, TRXL will be applicable to a wide variety of 

systems other than molecules containing heavy atoms. For example, the next-generation 

LCLS (LCLS-II HE) will be in operation in the near future and provide x-ray pulses of much 

higher photon flux than currently-running XFELs; specifically it will have 1000 times higher 

photon flux than PAL-XFEL. As a result, the signal-to-noise ratio of the data measured with 

LCLS-II HE would be improved by ~32 times (= square root of 1000) for a given 

measurement time, for example, compared with the data measured at PAL-XFEL presented 

in this work. As a result, LCLS-II HE would allow the detection of weak time-resolved 

scattering signal from molecules consisting of only light atoms such as carbon, nitrogen, and 

oxygen. To examine the feasibility of TRXL experiment on molecules consisting of only 

light atoms, we considered a model system of oxygen trimer, O3, for direct comparison with 

the gold trimer investigated in this work. Because the amplitude of difference x-ray solution 

scattering is proportional to the square of the number of electrons (Au: 79 electrons, O: 8 

electrons), O3 is expected to give smaller TRXL signal by 100 times than the gold trimer. 

Such deficiency of the scattering intensity of light atoms can be compensated for by 

significant increase of photon flux at LCLS-II HE. For O3 in solution, we simulated a TRXL 

experiment at LCLS-II HE by assuming 1000 times more photons per second than at PAL-

XFEL and data accumulation for 48 hours. 

In the simulation, we considered an asymmetric stretching mode of O3 with ΔRAB = 

0.24 Å, ΔRBC = 0.09 Å, ΔRAC = 0 Å , the oscillation period of 1 ps, and the damping constant 

of 1 ps. The concentration of O3 solution was set to be 3 mM in water solvent. Mock 
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difference scattering curves for O3 were calculated for time delays from –300 fs to 2500 fs 

with a time step of 50 fs. A static scattering curve at each time delay was calculated using 

Debye equation and added to a static scattering curve of water solvent that was 

experimentally obtained in a separate experiment. Then, random statistical error for each q 

point was generated assuming a Gaussian distribution with a standard deviation value at 

LCLS-II HE, ( )LCLS II HE q  . ( )LCLS II HE q   was calculated from the standard deviation value at 

PAL-XFEL, ( )PAL XFEL q  , obtained from the measurement of static scattering curve of water 

solvent, as follows, 

( ) ( )
LCLS II HE

LCLS II HE PAL XFEL

PAL XFEL

N
q q

N
 



 



                                                                      (S10) 

where NLCLS-II HE is the photon flux at LCLS-II HE (= 3 × 10
16

 photons/s) and NPAL-XFEL is the 

photon flux at PAL-XFEL (= 3 × 10
13

 photons/s).  

Random errors were generated for scattering curves at all time delays. Scattering 

curves at a reference time delay (that is, –300 fs) were generated in the same manner and 

subtracted from scattering curves at time delays from –300 fs to 2500 fs, resulting in mock 

time-resolved difference scattering curves. These procedures were performed repeatedly to 

simulate the data accumulated for 48 hours.  

In Fig. S4a, the mock time-resolved difference scattering curves at three 

representative time delays separated by a half period (500 fs) of the asymmetric stretching 

mode are shown (red curves). In addition, difference scattering curves generated without the 

random errors are shown together (black curves). We performed singular value 

decomposition analysis on the mock scattering curves. The first left and right singular 

vectors (lSVs and rSVs) for the mock scattering curves and the error-free mock scattering 

curves are shown by red and black curves, respectively, in Fig. S4b. From the comparison of 

the first singular vectors of the data sets with and without errors, we can expect that the 

simulated experimental conditions (data collection at LCLS-II HE for 48 hours) can yield a 

data set with a sufficient signal-to-noise ratio to recognize oscillatory features in q-axis and 

time-axis. Especially, temporal oscillation of the scattering data with an oscillation period of 

1 ps is clearly resolved, demonstrating that molecular vibrations of molecules containing 

only light atoms can be visualized by the TRXL experiment performed with LCLS-II HE.  
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To check whether such TRXL experiment on O3 in solution is feasible using 

currently available XFEL facilities, we performed another simulation of TRXL experiment 

at PAL-XFEL as an example. For this simulation, we used a standard deviation value at 

PAL-XFEL, ( )PAL XFEL q  , to generate random statistical error. Other parameters for the 

simulation were fixed to the same values used for the simulation for LCLS-II HE. In Fig. 

S4c, the mock time-resolved difference scattering curves (red curves) and difference 

scattering curves generated without the error (black curves) at time delays of 50 fs, 550 fs, 

and 1050 fs are shown. The first lSV and rSV for the mock scattering curves and the error-

free mock scattering curves are shown by red and black curves, respectively, in Fig. S4d. As 

can be seen from the first singular vectors of the data set with error, it is difficult to obtain a 

sufficient signal-to-noise ratio enough to resolve the oscillation of O3 by the TRXL 

experiment at PAL-XFEL., indicating that vibrations of molecules containing only light 

atoms is hard to be observed using currently available XFEL facilities. 

 

9. Contribution of monomers, dimers and trimers to time-resolved difference scattering 

curves, qΔS(q,t) 

The sample solution was prepared with the initial concentration of monomers being 

300 mM.  The prepared solution approaches the equilibrium with the dimers and trimers 

being formed with the aggregation of monomers, and the solution at equilibrium
17

 contains 

60 mM of monomers, 69 mM of dimers, and 34 mM of trimers
9
. Note that, with the 

concentrations and extinction coefficients of those species in this solution at equilibrium, 

qΔS(q,t) is dominated by the contribution of trimers. Because monomers have a negligibly 

small extinction coefficient and do not involve any photo-induced structural change, the 

contribution of the monomers to qΔS(q,t) can be completely ignored. Although the 

concentration of dimers (69 mM) is about twice larger than that of trimers (34 mM), the 

extinction coefficient of dimers (1.2 × 10
2 

cm
-1

M
-1

) is about 27 times smaller than that of 

trimers (3.2 × 10
3 

cm
-1

M
-1

)
9
. In addition, qΔS(q,t) arising from one trimer is about three 

times larger than that from one dimer because a trimer has three Au-Au pairs and a dimer 

has only one Au-Au pair. Considering those factors, the dimer contribution to qΔS(q,t) is 

expected to be less than 3 % compared with the trimer contribution
9
. Consequently, qΔS(q,t) 

is predominantly determined by the photoreaction of the trimers. 
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Table S1. Structural parameters of refined equilibrium structures of [Au(CN)2
–
]3  

 

Asymmetric S0 

Parameter Fit  value Error 

RAB (Å ) 3.13 0.004 

RBC (Å ) 3.38 0.004 

Au-Au-Au angle (°) 119 0.3 

Debye-Waller factor for RAB and RBC, σ1
2
 (Å

2
) 0.08 0.001 

Debye-Waller factor for RAC, σ2
2
 (Å

2
) 0.23 0.007 

 

Symmetric S0 

Parameter Fit  value Error 

RAB (= RBC) (Å ) 3.26 0.002 

Au-Au-Au angle (°) 119 0.3 

Debye-Waller factor for RAB and RBC, σ1
2
 (Å

2
) 0.09 0.001 

Debye-Waller factor for RAC, σ2
2
 (Å

2
) 0.23 0.007 

 

T1’ 

Parameter Value Error 

RAB (Å ) 2.82 (fix) – 

RBC (Å ) 2.82 (fix) – 

Au-Au-Au angle (°) 180 (fix) – 

Debye-Waller factor for RAB and RBC, σ1
2
 (Å

2
) 0.08 0.002 

Debye-Waller factor for RAC, σ2
2
 (Å

2
) 0.33 0.004 

 

T1 

Parameter Value Error 

RAB (Å ) 2.71 (fix) – 

RBC (Å ) 2.71 (fix) – 

Au-Au-Au angle (°) 180 (fix) – 
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Figure S1. Time-resolved difference scattering curves, qΔS(q,t), of [Au(CN)2
–
]3 obtained by 

azimuthal average of two-dimensional scattering images (black). For comparison, isotropic 

difference scattering curves were generated from the scattering images (red). The two data 

sets are identical to each other within experimental errors, indicating that azimuthally 

averaged difference curves used in this work are practically identical to the isotropic 

difference scattering curves. For analysis, the azimuthally averaged difference curves were 

used since they have actually measured experimental errors and a better signal-to-noise ratio. 
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Figure S2. (a) The scattering pattern of the gold trimer complex considering all the 

constituent atoms (red) is almost the same as the scattering pattern of only three Au atoms 

(black) because the scattering intensities from C and N atoms are negligibly small, and thus 

the gold trimer complex can be approximated as a triatomic molecule in terms of x-ray 

scattering signal. In the cases of [Ir2(dimen)4]
2+

 (b) and [Pt2(P2O5H2)4]
4-

 (c) for comparison, 

the contributions of the ligands are no longer negligible. 
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Figure S3. The total scattering pattern of the gold trimer complex is almost the same as the 

scattering pattern of the solute-only term because the contribution of the cage term is 

negligibly small. In the case of the gold trimer complex, the contribution of the cage term 

becomes negligible since the x-ray scattering factor of the gold atoms is dominant compared 

with the scattering factors of hydrogen and oxygen atoms of the solvent molecule. 
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Figure S4. Simulation of TRXL experiment on O3 in solution at LCLS-II HE. We assumed 

that O3 molecules in solution vibrate following an asymmetric stretching mode and calculated 

mock time-resolved difference scattering curves at time delays from –300 fs to 2500 fs with a 

time step of 50 fs. See supplementary text for details of the simulation. (a) Mock time-

resolved difference scattering curves at three representative time delays separated by a half 

period of the asymmetric stretching mode, without (black curves) and with (red curves) 

considering random statistical errors. The scattering curves with random statistical errors 



 

18 

 

were obtained by simulating TRXL data at LCLS-II HE with data accumulation for 48 hours. 

(b) Result of SVD analysis performed on the mock TRXL data without (upper panels) and 

with (lower panels) errors. To compare with TRXL experiment using currently available 

XFEL facilities, we performed another simulation of TRXL experiment on O3 in solution at 

PAL-XFEL as an example, considering the photon flux at PAL-XFEL while other parameters 

were fixed to the same values used for the simulation for the case of LCLS-II HE. Mock 

time-resolved difference scattering curves and SVD results are shown in (c) and (d), 

respectively. 
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Figure S5. (a, b) The projection of wave packet motion shown in Fig. 3a and 3c onto the 

RAB–RBC plane. The trajectory of the wave packet over time is shown by a black curved 

arrow and, in (a), the equilibrium distances of RAB and RBC in T1’ are indicated by red vertical 

and horizontal dotted lines, respectively. The positions of the wave packet at measured time 

points are indicated by dots, whose colors represent time delays based on a color scheme 

shown at the bottom of each panel. For several representative time delays, the time delays in 

femtoseconds units are shown next to the corresponding wave packet position. The harmonic 

oscillations of the wave packets in T1’ and S0 in the late time range (> 360 fs) are indicated 

by blue-shaded areas. (c, d) Late time-range (> 360 fs) trajectories of the excited-state wave 

packet in T1’ (c) and the ground-state wave packet in S0 (d) represented in the RAB–RBC plane. 
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These plots correspond to a magnified view of the blue-shaded areas in (a) and (b), 

respectively, for clear presentation of the harmonic oscillations. The normal coordinates of 

the two symmetric stretching modes, Q(T1_#6) and Q(T1_#12), for T1’ (c) and the symmetric 

and asymmetric stretching modes, Q(S0_#6) and Q(S0_#5), for S0 (d) are indicated by blue 

arrows. The displacements of three Au atoms by each normal mode are represented by yellow 

dots while the positions of Au atoms in the equilibrium structures are represented by grey 

dots. The displacement vectors of Au atoms for each mode are indicated by red arrows on the 

corresponding equilibrium structure. For each mode, the displacements of Au atoms are 

exaggerated for clarity. 
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