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Methods 
1. Fabrication and Characterization of the MAPbI3-Modified Au/TiO2 Nanodiode. 

To obtain a steady-state hot electron current, it is necessary to make a nanodiode. The procedure 

to fabricate the MAPbI3-modified Au/TiO2 nanodiode can be divided into three processes: (i) 

synthesize the perovskite precursor ink, (ii) prepare the Au/TiO2 nanodiode, and (iii) finally, 

spin coat the perovskite precursor ink on top of the Au/TiO2 nanodiode. 

Synthesis of the MAPbI3 Precursor Ink A more detailed description of the chemical 

and synthesis processes used in this work can be found in Ahn et al.1 First, 26.86 ml of 

methylamine (40 wt% in methanol, TCI) and 30 ml of hydriodic acid (57 wt% in water, Sigma-

Aldrich) were reacted at 0 ℃ for 2 h to obtain methylammonium iodide (CH3NH3I) powder. 

The white CH3NH3I powder was then recovered at 60 ℃ using a rotary evaporator. This 

powder was washed with ether (99%, Samchun) and stored in a vacuum oven at 60 ℃ overnight. 

Next, the CH3NH3I powder (318 mg), PbI2 (922mg, 99.99%, TCI), and N,N-dimethylsulfoxide 

(142 μl, 99.5%, Sigma-Aldrich) were dissolved in N,N-diemthylformamide (1048 μl, 99.8%, 

Sigma-Aldrich) to make the MAPbI3 precursor ink. The MAPbI3 precursor ink was stirred 

thoroughly in air until fully dissolved. 

Fabrication of the Thin-Film-Au/TiO2 and Plasmonic-Au/TiO2 Nanodiode We made 

two types of Au: thin-film and plasmonic. To fabricate the thin-film-Au/TiO2 nanodiode, a 

patterned stainless-steel mask (4 × 7 mm2) was aligned on an insulating silicon oxide wafer 

(300 nm), and then a Ti film (150 nm) was deposited using e-beam evaporation. The deposited 

Ti layer was heated at 470 ℃ in air for 2 h 15 min to react to form the TiO2 layer. After that, 

two ohmic electrodes composed of Ti (50 nm) and Au (100 nm) were evaporated with a second 

patterned mask (5 × 5 mm2), for the ohmic junction with the titanium oxide layer and the top 

gold film, respectively. Finally, the top thin layer of Au (15 nm) was deposited with a third 

patterned mask (2 × 6 mm2). For the plasmonic-Au/TiO2 nanodiode, the thin-film-Au/TiO2 

nanodiode was annealed at 200 °C for an hour in ambient air. 

Fabrication of the MAPbI3-Modified Au/TiO2 Nanodiode To fabricate the MAPbI3-

modified Au/TiO2 nanodiode, the prepared perovskite precursor ink was diluted to make a thin 
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MAPbI3 layer. After that, the diluted precursor ink (20 μl) was spin-coated on the surface of 

the active area at 4000 rpm for 25 sec. During the spin-coating process, 0.7 ml of diethyl ether 

(99.7%, anhydrous, Sigma-Aldrich) was gradually dropped onto the sample surface for 10 sec. 

The spin-coated perovskite film was then heated at 60 ℃ for 1 min and at 100 ℃ for 9 min in 

air. Finally, the nanodiode was cleaned with a solvent (except the top Au layer) to remove any 

unnecessary perovskite layer. The active area of the fabricated nanodiode is 2 × 2 mm2, and 

the samples were kept under N2 to avoid degradation of the perovskite film. 

Sample Preparation for the Femtosecond Transient Absorption (TA) Experiments 

Samples must absorb sufficient incident photons to obtain proper TA results, so we modified 

the sample fabrication process to generate thicker layers. Transparent quartz (2 × 2 cm2) was 

used as the substrate, and the TiO2 layer was made by heating a Ti film (80 nm) at the same 

temperature and time as in the nanodiode fabrication method. A gold film (20 nm) was 

deposited for the thin-film Au samples, and plasmonic Au was made by heating a 12.5 nm Au 

layer at 200 ℃ for 1 h in air. For a thicker perovskite layer, a 300 mM solution of precursor 

ink was prepared and spin-coated 5 times at the same conditions as used in the nanodiode 

fabrication process. 

Characterization The current–voltage curves and short-circuit photocurrents were 

measured using a source meter (Keithley instrument 2400). A tungsten–halogen lamp with a 

broad visible light spectrum and intensity of 9 mW/cm2 was used as the incident light source. 

The incident photon-to-current conversion efficiency (IPCE) was characterized with a Xe arc 

lamp source, where the wavelength can be tuned from 380 to 900 nm (Newport, TLS-300XU). 

The absorbance spectrum of the fabricated nanostructures was obtained using an UV-vis 

spectrophotometer (Hitachi, UV3600), and a clean quartz window was used as the reference. 

The sub-picosecond time-resolved absorption spectra were collected using a pump-probe 

transient absorption spectroscopy system. The pump light was generated by using a 

regenerative amplified titanium sapphire laser system (Spectra Physics, Spitfire Ace, 1 kHz) 

pumped by a diode-pumped Q-switched laser (Spectra Physics, Empower). The seed pulse was 

generated using a titanium sapphire laser (Spectra Physics, MaiTai SP). For the excitation beam, 

420 nm pulses produced from an optical parametric amplifier (Spectra Physics, TOPAS prime) 
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were used. The residual of the fundamental beam was converted to a white light continuum 

pulse, which was employed as the probe pulse with a controlled optical delay. The transmitted 

probe pulse was detected for spectral measurement with a CCD detector attached to an 

absorption spectroscope. The mechanical chopper modulated the pump pulse to obtain a pair 

of spectra with and without excitation, so the difference in absorption could be estimated. 
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2. Structures of the Fabricated MAPbI3/Thin-Film-Au/TiO2 and MAPbI3/Plasmonic-

Au/TiO2 Nanodiodes. 

 

 

Figure S1. (a) XRD patterns and (b) absorbance spectrum of the MAPbI3 thin film. 
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Figure S2. EDS elemental mapping images of the MAPbI3/plasmonic-Au/TiO2 

nanodiode. The images correspond to (a) Ti, (b) Au, (c) I, and (d) Pb. 
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Figure S3. (a) Plane view and (b) cross-sectional view of the scanning electron 

microscopy (SEM) images of the bare thin-film-Au/TiO2 nanodiode. SEM images of 

the MAPbI3/thin-film-Au/TiO2 nanodiode in (c) plane view and (d) cross-sectional view. 
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Figure S4. (a) Plane view and (b) cross-sectional view of the SEM images of the bare 

plasmonic-Au/TiO2 nanodiode. SEM images of the MAPbI3/plasmonic-Au/TiO2 

nanodiode in (c) plane view and (d) cross-sectional view. 
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Figure S5. Thickness of the MAPbI3 layer according to the number of repeated 

MAPbI3 deposition steps on the thin-film Au and plasmonic Au. 
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3. I–V Curves and Calculated Schottky Barrier Heights of the Fabricated Nanodiodes. 
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Figure S6. Current–voltage (I–V) curves measured on the (a) MAPbI3/thin-film-

Au/TiO2 and (b) MAPbI3/plasmonic-Au/TiO2 nanodiodes showing their respective 

rectifying behavior. 

 

We can obtain Schottky barrier heights, ideality factors, and series resistance for the 

fabricated nanodiodes by fitting measured I–V curves with the thermionic emission 

equation. The current density induced by overcoming the Schottky barrier height by 

thermionic emission as a function of external voltage is given by 

 = ∗∗ −   ( − ) − 1 
where  is the area, ∗∗ is the effective Richardson constant,   is the Schottky 

barrier height,  is the Boltzmann constant,  is the temperature,  is the series 

resistance, and  is the ideality factor. 
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Figure S7. The short-circuit photocurrent detected on the (a) MAPbI3/thin-film-Au/TiO2 

and (b) MAPbI3/plasmonic-Au/TiO2 nanodiodes with different thicknesses of MAPbI3. 

The photocurrent diminishes with a thicker perovskite layer (~70 nm) because of the 

mean free path length of the hot electrons. 

 

  



12 

 

4. Demonstration of the LSPR Effect on Photo-Conversion Performance. 
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Figure S8. Plots comparing the (a) IPCE and (b) short-circuit photocurrent detected 

on the MAPbI3/thin-film-Au/TiO2 and MAPbI3/plasmonic-Au/TiO2 photo-nanodiodes 

with identical perovskite deposition. 
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Figure S9. Absorbance spectra of (a) the MAPbI3/thin-film-Au and MAPbI3/plasmonic-

Au, and of (b) the bare thin-film Au and plasmonic Au. 
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Figure S10. Photoluminescence (PL) spectra of the thin-film-Au/TiO2 (black), 

MAPbI3/thin-film-Au/TiO2 (red), plasmonic-Au/TiO2 (orange), and MAPbI3/plasmonic-

Au/TiO2 (green) with an excitation wavelength at 325 nm. 
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5. Characterization of the Samples Used for the Femtosecond Transient Absorption (TA) 

Experiments. 

 

 

Figure S11. SEM images of the structures used for the TA experiments. (a) Bare 

plasmonic-Au/TiO2 on quartz. MAPbI3/plasmonic-Au/TiO2 deposited on quartz (b) in 

plane view and (c) cross-sectional view. Inset image in (c) shows the bare plasmonic-

Au/TiO2 structure in cross-sectional view. 
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Figure S12. TA spectra of TiO2 deposited on quartz with photoexcitation at 3.0 eV. 
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Figure S13. TA spectra of (a) thin-film-Au/TiO2 and (b) plasmonic-Au/TiO2 structures 

with photoexcitation at 3.0 eV. 
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Figure S14. Decay profile of the MAPbI3/plasmonic-Au/TiO2 structure probed with 

longer delay times. 
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Table S1. Parameters calculated from fitting the I–V curves measured on (a) the 

MAPbI3/thin-film-Au/TiO2 and (b) MAPbI3/plasmonic-Au/TiO2 nanodiodes to the 

thermionic emission equation. 

(a) 

 Schottky barrier 
height (ESB) 

Ideality factor 
() 

Series 
resistance (Rs) 

Thin-film-Au 0.87 eV 1.67 131.2 Ω 

MAPbI3 1L/ 
thin-film-Au 0.861 eV 1.41 115.4 Ω 

MAPbI3 1L/ 
thin-film-Au 0.871 eV 1.41 89.8 Ω 

MAPbI3 1L/ 
thin-film-Au 0.871 eV 1.42 73.9 Ω 

MAPbI3 1L/ 
thin-film-Au 0.879 eV 1.42 152 Ω 

 

(b) 

 Schottky barrier 
height (ESB) 

Ideality factor 
() 

Series 
resistance (Rs) 

Thin-film-Au 0.858 eV 1.59 40.8 Ω 

Plasmonic-Au 0.764 eV 2.27 43.2 Ω 

MAPbI3 1L/ 
plasmonic-Au 0.770 eV 1.64 39.15 Ω 

MAPbI3 3L/ 
plasmonic-Au 0.777 eV 1.63 36 Ω 

MAPbI3 5L/ 
plasmonic-Au 0.78 eV 1.61 43.1 Ω 

MAPbI3 8L/ 
plasmonic-Au 0.792 eV 1.56 33.2 Ω 

 


