Fate of transient isomer of CH₂I₂: Mechanism and origin of ionic photoproducts formation unveiled by timeresolved x-ray liquidography

Cite as: J. Chem. Phys. **150**, 224201 (2019); https://doi.org/10.1063/1.5099002 Submitted: 05 April 2019 . Accepted: 23 May 2019 . Published Online: 14 June 2019

Sungjun Park, Jungkweon Choi, Hosung Ki, Kyung Hwan Kim, Key Young Oang, Heegwang Roh, Joonghan Kim, Shunsuke Nozawa, Tokushi Sato, Shin-ichi Adachi, Jeongho Kim (10), and Hyotcherl Ihee (10)

ARTICLES YOU MAY BE INTERESTED IN

Accurate global potential energy surface for SiH₂⁺(X^2A_1) and quantum dynamics of related reaction H(²S) + SiH⁺($X^1\Sigma^+$) The Journal of Chemical Physics **150**, 224304 (2019); https://doi.org/10.1063/1.5088637

Surface morphology and straight crack generation of ultrafast laser irradiated β -Ga₂O₃ Journal of Applied Physics **125**, 223104 (2019); https://doi.org/10.1063/1.5091700

The microscopic Einstein-de Haas effect The Journal of Chemical Physics **150**, 224109 (2019); https://doi.org/10.1063/1.5092223

Lock-in Amplifiers up to 600 MHz

J. Chem. Phys. **150**, 224201 (2019); https://doi.org/10.1063/1.5099002 © 2019 Author(s).

ARTICLE

Fate of transient isomer of CH₂I₂: Mechanism and origin of ionic photoproducts formation unveiled by time-resolved x-ray liquidography

Cite as: J. Chem. Phys. 150, 224201 (2019); doi: 10.1063/1.5099002 Submitted: 5 April 2019 • Accepted: 23 May 2019 • Published Online: 14 June 2019

Sungjun Park,^{1,2,a)} Jungkweon Choi,^{2,a)} Hosung Ki,² Kyung Hwan Kim,³ Key Young Oang,⁴ Heegwang Roh,¹ Joonghan Kim,⁵ Shunsuke Nozawa,⁶ Tokushi Sato,^{6,b} Shin-ichi Adachi,^{6,7} Jeongho Kim,^{8,c} 厄 and Hyotcherl Ihee^{1,2,c)}

AFFILIATIONS

- ¹ Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- ²Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- ³Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- ⁴Radiation Center for Ultrafast Science, Quantum Optics Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
- ⁵Department of Chemistry, The Catholic University of Korea, Bucheon 14662, South Korea
- ⁶Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- ⁷Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- ⁸Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea

Note: This paper is part of the JCP special collection on Ultrafast Spectroscopy and Diffraction from XUV to X-ray. ^{a)}Contributions: S. Park and J. Choi contributed equally to this work.

^{b)} Present address: Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany and European XFEL GmbH. Holzkoppel 4, 22869 Schenefeld, Germany.

^{c)}Authors to whom correspondence should be addressed: jkim5@inha.ac.kr and hyotcherl.ihee@kaist.ac.kr

ABSTRACT

Diiodomethane, CH_2I_2 , in a polar solvent undergoes a unique photoinduced reaction whereby I_2^- and I_3^- are produced from its photodissociation, unlike for other iodine-containing haloalkanes. While previous studies proposed that homolysis, heterolysis, or solvolysis of iso-CH₂I-I, which is a major intermediate of the photodissociation, can account for the formation of I_2^- and I_3^- , there has been no consensus on its mechanism and no clue for the reason why those negative ionic species are not observed in the photodissociation of other iodine-containing chemicals in the same polar solvent, for example, CHI₃, C₂H₄I₂, C₂F₄I₂, I₃⁻, and I₂. Here, using time-resolved X-ray liquidography, we revisit the photodissociation mechanism of CH₂I₂ in methanol and determine the structures of all transient species and photoproducts involved in its photodissociation and reveal that I_2^- and I_3^- are formed via heterolysis of *iso*-CH₂I–I in the photodissociation of CH₂I₂ in methanol. In addition, we demonstrate that the high polarity of *iso*- CH_2I -I is responsible for the unique photochemistry of CH_2I_2 .

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099002

INTRODUCTION

Physical and chemical properties of a molecule are governed by intramolecular forces (that is, chemical bonds) as well as intermolecular interactions, which include dipole-dipole interaction and dispersion forces. Accordingly, the outcome of a chemical reaction is determined by such intermolecular interactions. In particular, in solution-phase reactions, the solute-solvent interaction is a critical factor that determines the pathways and kinetics of the reaction by changing the landscape of potential energy surfaces.^{1–8} For example, there have been many reports showing that the solvent polarity alters not only the three-dimensional structure of a molecule^{9,10} but also the dynamics and mechanism of a reaction.^{11,12}

Here, we investigate an interesting photoreaction that not only exhibits the variation of reaction pathways depending on the solvent polarity but also produces a unique ionic species not observed in other photoreactions with chemical similarities. The reactant of the photoreaction, diiodomethane (CH₂I₂), is one of the most extensively investigated haloalkanes, and its photodissociation has been studied as a prototype dissociation reaction with various time-resolved techniques such as transient absorption spectroscopy,13-15 time-resolved resonance Raman spectroscopy,1 and time-resolved X-ray solution scattering (TRXSS).^{20,21} Figure 1 outlines various reaction pathways of CH2I2 photodissociation reported by several previous studies.^{13,16,20,21} Photoexcitation at 267 nm induces the $n(I) \rightarrow \sigma^*(C-I)$ transition, leading to the breaking of one of the two C-I bonds in CH₂I₂.^{14,22,23} In the gas phase, the excitation of CH₂I₂ at wavelengths longer than 248 nm generates CH₂I· and I· radical fragments.²⁴⁻²⁶ By contrast, in liquid solutions, the excited CH₂I₂ molecule undergoes two parallel reaction pathways: (i) radical formation, that is, dissociation of CH₂I₂ into CH2I· and I· radicals, and (ii) isomer formation, that is, geminate recombination of CH2I· and I· to generate iso-CH2I-I. Both radical formation and isomer formation pathways are active irrespective of the polarity of solvent, but the ensuing reactions and their kinetics vary substantially depending on the solvent polarity, which is quite a complex photochemical behavior compared with those of other iodine-containing compounds. In nonpolar solvents, iso-CH2I-I undergoes homolysis to generate CH2I· and I· radicals, and I· released from the solvent cage either combines nongeminately with another I- to form I2 or recombines geminately/nongeminately with CH₂I· to regenerate CH₂I₂. By contrast, the reaction mechanism of CH2I2 in polar solvents is not only more

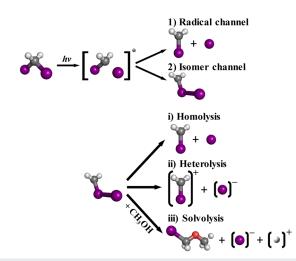
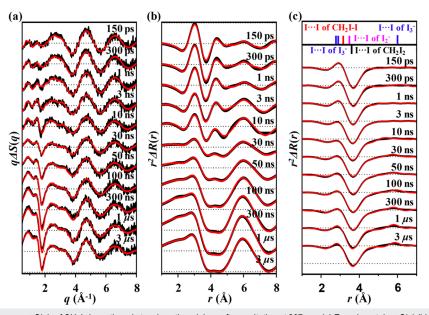


FIG. 1. Reaction pathways of CH₂I₂ photodissociation in methanol and dissociation of the isomer via homolysis, heterolysis, or solvolysis.

complicated than that in nonpolar solvents but also more complicated than the mechanisms of other iodine-containing chemicals in the same polar solvent, for example, CHI₃, $C_2H_4I_2$, $C_2F_4I_2$, I_2 , and I_3^{-} .^{9–11,27–35}

The complication of the reaction mechanism of CH₂I₂ photodissociation in polar solvents stems mainly from the way how negative ionic species such as I₂⁻ and I₃⁻ are formed. Since the formation of these negative ionic species requires I⁻ as a precursor, the question of how I⁻ is formed is central to the formation mechanism of I_2^- and I_3^- but it has been controversial. From a study using ultrafast transient absorption spectroscopy, it was suggested that iso-CH₂I-I in methanol is dissociated into CH₂I⁺ and I⁻ via heterolysis with ion solvation.¹³ Later, based on time-resolved resonance Raman spectroscopy, nuclear magnetic resonance (NMR), and ab initio calculations, it was suggested that iso-CH2I-I undergoes solvolysis with methanol into $H^+ + I^- + CH_3O-CH_2I$, which then undergoes further solvolysis to generate CH₃O-CH₂-OCH₃.¹⁶ By contrast, in a study using TRXSS, it was proposed that iso-CH₂I-I is dissociated into CH2I and I via homolysis, even in polar solvents, 20,21 and thus, electron transfer from the polar solvent to $\ensuremath{\mathrm{Ie}}$ is needed for the formation of I⁻. In summary, according to the previous studies, three types of dissociation pathways of iso-CH₂I-I (that is, heterolysis, solvolysis, and homolysis) can lead to the formation of I⁻, but it is still inconclusive which mechanism is in action. Here, it should be noted that, in general, the photodissociation of iodine-containing compounds such as CHI₃, C₂H₄I₂, $C_2F_4I_2$, I_2 , and I_3^- results in the formation of I_2 , not I_2^- , even in the methanol solvent, $^{9,10,28,32-34}$ indicating that the formation of I₂⁻ is a unique photochemical property of CH₂I₂. Nevertheless, this point has not received proper attention in previous studies and there has been no clue for this unique photochemistry reported thus far.


To address this issue in this work, we used TRXSS to investigate the reaction dynamics of CH_2I_2 photodissociation. TRXSS, also known as time-resolved X-ray liquidography (TRXL), is a powerful tool that not only provides the information on the reaction mechanism of various chemical reactions in the solution phase but also tracks the structural progression of transient species generated during the reaction. The TRXL experiment was performed with femtosecond laser pulses (267 nm) for excitation and 100-ps X-ray pulses for probing the transient molecular structures resulting from the photodissociation of CH_2I_2 in methanol.

RESULTS AND DISCUSSION

Time-resolved difference scattering curves

The difference X-ray scattering intensities, $q\Delta S(q, t)$, containing the structural changes are shown in Fig. 2(a) as a function of the momentum transfer $q = (4\pi/\lambda)\sin\theta$, where 2θ is the scattering angle and λ is the average wavelength (0.71 Å) of the incident polychromatic X-rays with ~5% bandwidth. The difference scattering intensities were obtained by subtracting the scattering pattern measured at -3 ns (i.e., before excitation) from the scattering patterns measured at positive time delays, as described previously.^{12,32-34,36}

Figure 2 shows the experimental and theoretical $q\Delta S(q)$ curves, difference radial distribution functions (Δ RDFs), $r^2\Delta R(r)$, and the

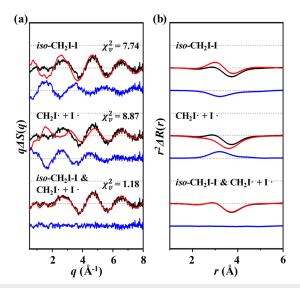


FIG. 2. Difference scattering curves, $q \Delta S(q)$, of CH₂I₂ in methanol at various time delays after excitation at 267 nm. (a) Experimental $q\Delta S(q)$ (black), where $q\Delta S(q, t) = qS(q, t) - qS(q, -3 \text{ ns})$, and calculated $q\Delta S(q)$ (red) curves based on the final optimized kinetic model. For a proper comparison of oscillatory features from 30 ns to 3 μ s, $q\Delta S(q)$ below 3.4 Å⁻¹ were multiplied by a factor of 0.4. (b) The difference radial distribution function, $r^2\Delta R(r, t)$, obtained by the sine-Fourier transform of $q\Delta S(q, t)$ shown in (a). For a proper comparison of $r^2\Delta R(r, t)$, $r^2\Delta R(r, t)$ from 30 ns to 3 μ s were multiplied by a factor of 0.4. (c) Experimental (black) and theoretical (red) solute-only difference radial intensity curves. The solute-related atom-atom distances are displayed at the top of the plot. The upward and downward bars with reference to a horizontal line indicate the interatomic distances of newly formed and depleted atomic pairs, respectively. The atomic pairs belonging to CH₂I₂, CH₂I–I, I₂⁻, and I₃⁻ are indicated in black, red, magenta, and blue, respectively.

solute-only $r^2 \Delta R(r)$, that is, $r^2 \Delta R_{\text{solute}}(r)$, at various time delays. Experimental difference scattering curves measured at various time delays are shown in Fig. 2(a), together with theoretical difference scattering curves that were fit to the experimental difference scattering curves using the best kinetic model, which will be discussed later. It can be seen that the experimental and the theoretical curves are in good agreement with each other, testifying the relevance of the kinetic model. In Fig. 2(b), Δ RDFs, $r^2 \Delta R(r)$, obtained by sine-Fourier transform of the difference scattering curves in Fig. 2(a) are shown together with theoretical $r^2 \Delta R(r)$ curves that well reproduce the experimental ones. The scattering signal of a solution sample can be decomposed into (i) the solute-only term, (ii) the cage term, and (iii) the solventonly term. To emphasize the solute-only $r^2 \Delta R(r)$, the cage and solvent-only contributions were subtracted from $r^2 \Delta R(r)$ of the solution sample to obtain $r^2 \Delta R_{\text{solute}}(r)$ shown in Fig. 2(c), where the internuclear distances of various solute species (that is, the reactant and reaction intermediates) involved in the photoreaction are indicated with positive (intermediate) and negative (reactant) bars.

Identification of major intermediates at 150 ps

To identify the major intermediates on subnanosecond time scale, we first analyzed the $q\Delta S(q)$ curve at 150 ps shown in Fig. 3. We considered three kinetic models of reaction pathways: (i) formation of *iso*-CH₂I–I (CH₂I₂ \rightarrow *iso*-CH₂I–I), (ii) formation of CH₂I

FIG. 3. Determination of reaction intermediates of CH₂I₂ photodissociation in methanol at 150 ps time delay. (a) Experimental $q\Delta S(q)$ curve at 150 ps (black) was fit by theoretical $q\Delta S(q)$ curves (red) constructed based on three kinetic models of reaction pathways: formation of only *iso*-CH₂I-I (top), dissociation into CH₂I and I radicals (middle), and formation of both *iso*-CH₂I-I and CH₂I radicals (bottom). The residual (blue curves) obtained by subtracting the theoretical $q\Delta S(q)$ from the experimental $q\Delta S(q)$ is shown together. (b) $r^2\Delta R(r)$ curves obtained by the sine-Fourier transform of $q\Delta S(q)$ curves shown in (a).

and I radicals (CH₂I₂ \rightarrow CH₂I· + I·), and (iii) formation of both CH₂I· and *iso*-CH₂I–I with a branching ratio α [CH₂I₂ \rightarrow (1 – α) $(CH_2I + I) + \alpha iso-CH_2I-I]$. Experimental $q\Delta S(q)$ curves were fit by theoretical $q\Delta S(q)$ curves by optimizing selected structural parameters for each kinetic model. As shown in Fig. 3(a), model (iii) that includes the formation of both CH2I· and iso-CH2I-I gives the best fit with the reduced-chi square (χ_v^2) value of 1.18 and $\alpha = 0.54 \pm 0.02$. This result suggests that the photodissociation of CH₂I₂ proceeds via the reaction pathways leading to the formation of both CH₂I· and iso-CH₂I-I. Previously, an optical spectroscopic study reported that iso-CH₂I-I is formed in methanol with the quantum yield of 0.74 ± 0.08 within ~15 ps,¹³ whereas a previous TRXL study reported a relatively low quantum yield (0.34) for iso-CH2I-I.^{20,21} The quantum yield for iso-CH2I-I obtained from our TRXL study (0.54) lies between the two previously reported values, but it is still large enough to guarantee that the iso-CH₂I-I is a major intermediate of the photoreaction of CH₂I₂ in methanol.

The fitting analysis for the $q\Delta S(q)$ curve at 150 ps based on the three kinetic models is more intuitively visualized in the real space (that is, r-space), as shown in Fig. 3(b). In principle, the ΔRDF , $r^2 \Delta R(r)$, obtained by the sine-Fourier-transform of $q \Delta S(q)$ gives information on the change in the distribution of interatomic distances. In \triangle RDF, a positive peak indicates the formation of an atom-atom pair, whereas a negative peak corresponds to the elimination of an atom-atom pair owing to the bond cleavage. As shown in Fig. 3(b), the best-fit model, $CH_2I_2 \rightarrow 54\%$ (iso- CH_2I-I) + 46% (CH₂I· + I·), well reproduces three major features at 2.14 Å (negative), 3.09 Å (positive), and 3.60 Å (negative) in the experimental Δ RDF at 150 ps. Considering the structure of *iso*-CH₂I-I, the positive peak at 3.09 Å can be assigned to the formation of the I-I atomic pair in iso-CH₂I-I and the two negative peaks at 2.14 Å and 3.60 Å correspond to the depletion of C-I and I-I atomic pairs, respectively, in CH₂I₂ by the C-I bond cleavage. As depicted in Fig. 3(b), the isomer model fails to reproduce the peak intensities in the region of 1.5-6 Å, resulting in a poor fit. Also, the radical model does not reproduce the positive peak in the region of 2-4 Å due to the absence of the isomer. These results indicate that both isomer and radicals are present at 150 ps as reaction intermediates.

Dissociation mechanism of iso-CH₂I-I

One of the major issues investigated in this study is which reaction involving *iso*-CH₂I–I is a major source of I⁻, which is the precursor of I₂⁻ and I₃⁻. The relevant reactions for three candidate kinetic models including homolysis, heterolysis, or solvolysis of *iso*-CH₂I–I are as follows:

Homolysis:

$$CH_2I_2 \rightarrow CH_2I \cdot + I_{\gamma},$$
 (1)

 (\mathbf{a})

$$CH_2I_2 \rightarrow iso-CH_2I-I, \qquad (2)$$

$$1SO-CH_2I-I \to CH_2I + I^{\circ}, \tag{3}$$

$$I \cdot + e^- \to I^-, \qquad (4)^*$$

$$1 \cdot + 1 \rightarrow 1_2 , \qquad (5)$$

$$\mathbf{I} \cdot + \mathbf{I}_2^- \to \mathbf{I}_3^-. \tag{6}$$

Heterolysis:

$$CH_2I_2 \to CH_2I + I, \tag{1}$$

$$CH_2I_2 \rightarrow iso-CH_2I-I,$$
 (2)

$$iso-CH_2I-I \rightarrow CH_2I^+ + I^-,$$
 (3)**

$$I \cdot + I^- \to I_2^-, \tag{5}$$

$$\mathbf{I} \cdot + \mathbf{I}_2^- \to \mathbf{I}_3^-. \tag{6}$$

Solvolysis:

$$CH_2I_2 \rightarrow CH_2I \cdot + I_{\cdot},$$
 (1)

$$CH_2I_2 \rightarrow iso-CH_2I-I,$$
 (2)

$$iso-CH_2I-I+CH_3OH \rightarrow CH_3O-CH_2I+H^++I^-,$$
 (3)***

$$I \cdot + I^- \to I_2^-, \tag{5}$$

$$I \cdot + I_2^- \to I_3^-. \tag{6}$$

The key reaction steps that are different in the three cases are emphasized with asterisks. In fact, we considered all possible pathways comprehensively, as illustrated in Fig. S1 and will be discussed later, but here, we show only the pathways that were found to be the most plausible according to the results of the global fitting (GF) analysis. In the GF analysis, the experimental difference scattering curves at all time delays were fit simultaneously by theoretical $q\Delta S(q)$ curves calculated with global fitting parameters, with the maximum likelihood estimation method being applied as a fitting algorithm. In this fitting algorithm, the χ_v^2 value for the discrepancy between the experimental and theoretical $q\Delta S(q)$ curves was employed as a measure of the goodness of the fit. The density functional theory (DFT)-optimized structures of solute molecules were used as starting structures of the global fitting and, as fitting parameters, we used several selected structural parameters of the solute molecules and other relevant kinetic parameters, for example, rate constants for all reaction pathways, branching ratios of the photoproducts, and the excitation ratio of photoexcited molecules.

In the three candidate kinetic models shown above, the products of the key reactions involving iso-CH₂I-I are CH₂I, CH₂I⁺, or CH₃O-CH₂I. The scattering signal of CH₃O-CH₂I is quite different from those of CH₂I· and CH₂I⁺ due to extra atoms, but in principle, it is challenging to distinguish CH₂I· and CH₂I⁺ only by their scattering patterns unless their exact three-dimensional structures are known. For example, if the atomic distances of C-I pairs, which give the largest scattering among all pairs, in those species are identical to each other, their scattering patterns will be highly similar to each other [Fig. S2(a)]. However, the cage term would still be very different depending on the absence/presence of the extra charge or extra atoms, therefore helping to distinguish CH₂I· and CH₂I⁺ [Fig. S2(b)]. To determine the mechanism of I⁻ formation, we first fit experimental $q\Delta S(q)$ curves at all time delays with theoretical $q\Delta S(q)$ curves based on one of the three kinetic models: homolysis, heterolysis, and solvolysis of iso-CH₂I-I. To do so, we used the structural parameters (for CH₂I₂, *iso*-CH₂I-I, CH₂I, CH₂I, and CH₃O-CH₂I) predicted by DFT calculations or the experimentally reported ones (for I₂ and I₃⁻). The reduced chi-square values for the homolysis, heterolysis, and solvolysis models are 1.78, 1.67, and 1.82, respectively,

indicating that the heterolysis model gives the most satisfactory fit.

While we used the molecular structures of reaction intermediates calculated from quantum calculation to initially fit the timeresolved scattering curves, those theoretically predicted structures are not guaranteed to be accurate as the structures of intermediates involved in the nonequilibrium photochemical reaction. Therefore, we refined the structures of reaction intermediates and products by allowing all structural parameters to vary when globally fitting the experimental time-resolved scattering curves at all time delays based on each kinetic model. We assumed that the refined structure of each intermediate stays the same during the reaction. The optimized molecular structures of intermediates vary depending on the kinetic model because, in principle, each kinetic model is supposed to give different concentrations of intermediates at a given time, but the global fitting is governed by common experimental time-resolved scattering curves irrespective of the kinetic model. As the global fitting-optimized structures deviate further from the calculated structures, it is judged that the fitting is less adequate. As shown in Table I, with the refinement of the molecular structures of reaction intermediates and products, the heterolysis model still best fits the experimental $q\Delta S(q)$ curves.

To confirm which kinetic model is the most suitable, beyond the fitting quality, we also checked structural parameters such as (i) the C–I bond lengths of CH_2I^+ or CH_2I and (ii) the I–I bond lengths of I_2^- , I_3^- , and *iso*- CH_2I –I among the selected structural fitting parameters that were adjusted to refine the actual structure of the chemical species involved in the photodissociation of CH_2I_2 . The results show that the kinetic model including heterolysis provides the most reasonable values for the C–I bond lengths of either CH_2I^+ or CH_2I . As shown in Table II, for the heterolysis model, the C–I bond length of CH_2I^+ was determined to be 1.91 ± 0.25 Å, which is close to that of CH_2I^+ calculated by DFT (1.94 Å) and CCSD(T) (1.94 Å), and the C–I bond length of CH_2I was determined to be 2.04 \pm 0.30 Å, which is in excellent agreement with those of CH_2I - calculated by DFT (2.04 Å) and CCSD(T) (2.05 Å). By contrast, for the kinetic models based on the homolysis and solvolysis, the C–I bond lengths of CH₂I· were determined to be 1.86 Å \pm 0.30 and 1.94 Å \pm 0.35, respectively, and these bond lengths are much shorter than the calculated C–I bond length value of CH₂I· (2.04 Å).

However, the large uncertainty associated with the C-I bond lengths makes it difficult to judge the most suitable candidate kinetic model only based on the good agreement between the C-I bond lengths determined from the structural refinement and the DFT calculation. In this regard, the I-I bond lengths provide more convincing evidence because they would have much smaller uncertainties due to the larger scattering of I-I pairs than C-I pairs. For the I-I bond lengths of I_2^- and I_3^- , the heterolysis model again gives better agreement with the DFT-calculated values than the homolysis and solvolysis models. Specifically, with the heterolysis model, the I–I bond length of I_2^- was determined to be 3.325 \pm 0.005 Å, which is close to 3.235 Å (*w*B97X/AVTZ) and 3.332 Å (MN12-SX/AVTZ) calculated from DFT calculations, whereas the homolysis and solvolysis models give the I–I bond lengths of 3.535 \pm 0.003 Å and 3.525 ± 0.003 Å, respectively, which deviate much from the DFT-calculated values.

For I₃⁻, quantum calculation predicted identical bond lengths for the two I–I bonds: 2.933 Å (ω B97X/AVTZ) and 2.949 Å (MN12-SX/AVTZ). However, according to a previous TRXL study on the photodissociation of I₃⁻,¹⁰ I₃⁻ formed by the reaction between I₂⁻ and I· in the polar solvent has an asymmetric structure with two different I–I bond lengths, 2.98 ± 0.03 and 3.03 ± 0.04 Å. From the global fitting analysis, the I₁–I₂ and I₂–I₃ bond lengths of I₃⁻ were determined to be 2.962 ± 0.012 and 3.053 ± 0.008 Å in the heterolysis model, 2.850 ± 0.010 and 3.100 ± 0.015 Å in the homolysis model, respectively. Thus, as is the case for the C–I bond lengths of CH₂I⁺ or CH₂I· and the I–I bond length of I₂⁻, the I–I bond lengths of I₃⁻.¹⁰

	Homolysis	Heterolysis	Solvolysis
Fraction of photoexcited molecules ^a	23.2% (±0.2)	23.0% (±0.1)	19.8% (±0.1)
Fraction for the isomer channel	21.2% (±0.4)	23.5% (±0.5)	20.4% (±1.1)
Fraction for the radical channel	21.9% (±0.6)	$20.0\% (\pm 0.4)$	30.1% (±0.9)
Fraction of direct relaxation back	56.9% (±0.1)	56.5% (±0.2)	49.5% (±0.1)
to the ground state ^b			
$CH_2I-I \rightarrow CH_2I \cdot + I \cdot$	$2.33 (\pm 0.02) \times 10^8 \text{ s}^{-1}$		
$CH_2I - I \rightarrow CH_2I^+ + I^-$		$2.23 (\pm 0.01) \times 10^8 \text{ s}^{-1}$	
$CH_2I-I + CH_3OH$			$9.91 (\pm 0.02) \times 10^{6} \text{ M}^{-1} \text{ s}^{-1}$
\rightarrow CH ₃ OCH ₂ I + H ⁺ + I ⁻			
$\mathbf{I} \cdot + \mathbf{I}^- \to \mathbf{I}_2^-$	$5.12 (\pm 0.02) \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$	$7.69~(\pm 0.03) \times 10^{10} { m M}^{-1} { m s}^{-1}$	$1.01 (\pm 0.02) \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$
$I \cdot + I_2^- \rightarrow I_3^-$	$7.76 (\pm 0.01) \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$	$3.28 (\pm 0.02) \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$	$1.00 \ (\pm 0.01) \times 10^9 \ \mathrm{M}^{-1} \ \mathrm{s}^{-1}$
Reduced chi-square ^c	1.566	1.497	1.627

^aThis value is the fraction of photoexcited molecules from the CH₂I₂ solution (50 mM) in the ground state.

^bThis value is the fraction of the photoexcited molecules that relax back to the ground state without undergoing photodissociation.

^cThe reduced chi-square value (in bold) reflects the quality of fitting. As this value is smaller, the quality of fit to the experimental data is better.

TABLE II. Optimized structural parameters of the chemical species involved in the CH ₂ I ₂ photodissociation, obtained by either quantum chemical ca	alculation or global fitting
analysis based on homolysis, heterolysis, and solvolysis models. ^a	

Species	Parameter ^c	DFT		Ab initio	GF analysis ^b		
		ωB97X/ AVTZ ^c (methanol)	MN12-SX/ AVTZ ^d (methanol)	CCSD(T)/ AVQZ (methanol)	Homolysis	Heterolysis	Solvolysis
CH ₂ I ₂	C-I I-I I-C-I	2.125 Å 3.580 Å 114.76°	2.129 Å 3.585 Å 114.71°	2.132 Å 3.588 Å 114.55°	2.134 Å (±0.400) 3.596 Å (±0.005) 114.82° (±0.50)	2.135 Å (±0.200) 3.601 Å (±0.003) 114.99° (±0.35)	2.145 Å (±0.250) 3.625 Å (±0.002) 115.34° (±0.40)
CH ₂ I ₁ -I ₂	$\begin{array}{c} C-I_1\\ I_1-I_2\\ C-I_1-I_2\end{array}$	1.983 Å 3.155 Å 114.98°	1.942 Å 3.133 Å 121.93°	···· ···	1.963 Å (±0.300) 3.136 Å (±0.005) 110.4° (±3.7)	1.975 Å (±0.250) 3.094 Å (±0.006) 115.7° (±4.3)	1.956 Å (±0.350) 3.058 Å (±0.003) 119.6° (±5.7)
CH ₂ I·	C-I	2.038 Å	2.040 Å	2.050 Å	1.864 Å (±0.300)	2.038 Å (±0.300)	1.938 Å (±0.350)
$\overline{CH_2I^+}$	C-I	1.936 Å	1.938 Å	1.940 Å		1.910 Å (±0.250)	
CH ₃ OCH ₂ I	C-I	2.208 Å					2.105 Å (±0.300)
$\overline{I_2}^-$	I–I	3.235 Å	3.332 Å		3.530 Å (±0.003)	3.325 Å (±0.005)	3.525 Å (±0.027)
$I_3^{-}(I_1-I_2-I_3)^{-}$	$I_{1}-I_{2} \\ I_{2}-I_{3} \\ I_{1}-I_{2}-I_{3}$	2.933 Å 2.933 Å 180°	2.949 Å 2.949 Å 180°	···· ···	2.850 Å (±0.010) 3.100 Å (±0.015) 180° (fixed)	2.962 Å (±0.012) 3.053 Å (±0.008) 180° (fixed)	2.858 Å (±0.027) 3.066 Å (±0.023) 180° (fixed)

^aThe listed parameters were either optimized by DFT calculations or obtained from GF analysis of the experimental TRXL data.

^bErrors for global fitting parameters are shown in the parenthesis. Fixed values are excerpted from the ω B97X/AVTZ calculation.

^cThe parameters (in bold) refer to the structural parameters of each chemical species. The parameters consisting of two atomic symbols represent bond lengths and the parameters consisting of three atomic symbols represent bond angles.

^dDFT-optimized parameters by considering the scalar relativistic effect by introducing dhf-TZVPP small-core relativistic effective core potential (RECP) on the iodine atom.³⁷

For *iso*-CH₂I–I, with the heterolysis model, the C–I₁–I₂ angle was determined to be 115.7° ± 4.3°, which is similar to the DFTcalculated value of 114.98° (ω B97X/AVTZ) and 121.93° (MN12-SX/AVTZ). The I–I bond length of *iso*-CH₂I–I was determined to be 3.094 ± 0.006 Å, which is smaller than the DFT-calculated values, 3.155 Å (ω B97X/AVTZ) and 3.133 Å (MN12-SX/AVTZ), and larger than the experimentally determined value (3.04 Å) in a previous TRXL study on the photodissociation of CH₂I₂.^{20,21} In fact, the I–I bond length of *iso*-CH₂I–I obtained with the homolysis model is closer to the DFT values. Nevertheless, based on the global fitting of our TRXL data and the overall comparison of optimized structural parameters obtained from the fitting of experimental TRXL data with their DFT-calculated values, we conclude that the heterolysis model is the most relevant mechanism for the formation of I⁻ from *iso*-CH₂I–I.

In the previous TRXL study on CH_2I_2 ,^{20,21} it was found that the I–I bond length of *iso*-CH₂I–I is larger by 0.07 Å in methanol than in cyclohexane and it was suggested that the longer I–I bond length in the polar solvent originates from the stronger interaction of *iso*-CH₂I–I with methanol than with cyclohexane. In a transient absorption spectroscopy,¹³ it was shown that *iso*-CH₂I–I has a shorter lifetime (5 ns) in methanol than in *n*-hexane and it was suggested that the shorter lifetime in the polar solvent arises from the stabilization of ionic resonance forms, which may readily undergo the heterolytic cleavage of the I–I bond. Also, CH_2I^+ was observed in the gas-phase decomposition of CH_2I_2 ,^{38,39} suggesting the stability of the positive ionic species generated from heterolysis. Moreover, theoretical calculations for the products of CH_2I_2 photodissociation¹³ showed that the ion pair of CH_2I^+ and I^- is stabilized significantly by the solvation in polar solvents such as methanol, ethanol, and acetonitrile and that the solvated ion pair, $(CH_2I^+ + I^-)_{sol}$, in those polar solvents has a lower energy than the radical pair of CH_2I^- and $I \cdot (^2P_{1/2})$ [although it has a slightly higher energy than the radical pair of CH_2I^- and $I \cdot (^2P_{3/2})$].

To examine the energetics of the three pathways for the dissociation of *iso*-CH₂I–I, we performed DFT and *ab initio* calculations for the products of CH₂I₂ photodissociation, of which the details are presented in the supplementary material and the calculation results are summarized in Fig. S3 of the supplementary material. As shown in Figs. S3 and S4, the heterolysis and homolysis pathways are nearly degenerate in methanol, supporting that the heterolysis can occur in methanol in terms of energetics. Although the solvolysis pathway is an endothermic reaction that requires a lower energy than both heterolysis and homolysis pathways, the products of solvolysis, CH₃O–CH₂I and CH₃O–CH₂–OCH₃, are likely to be formed on slower time scales than the products of heterolysis and homolysis according to the result of previous time-resolved resonance Raman study that reported the solvolysis-mediated dissociation of *iso*-CH₂I-I, ¹⁶ thus negating the involvement of solvolysis in the formation of I^- in methanol.

Reaction kinetics

Figure 4(a) shows the time-dependent concentration profiles of chemical species involved in the photodissociation of CH_2I_2 . The dissociation of *iso*-CH₂I–I occurs with the time constant of 4.48 ns, and the concentration of CH_2I^+ increases with the same time constant, in accordance with the heterolysis mechanism. The concentration of I· decreases in ~10 ns via reactions (5) and (6), while I⁻ is consumed in tens of nanosecond via reaction (5). As the concentrations of I· and I⁻ decrease, I₂⁻ and I₃⁻ are formed until I· becomes depleted at ~30 ns.

In principle, I_3^- can be formed through reactions (5) and (6) irrespective of how *iso*-CH₂I–I is dissociated, but we can consider an alternative pathway for the formation of I_3^- as follows:

$$\mathbf{I} \cdot + \mathbf{I} \cdot \to \mathbf{I}_2,\tag{7}$$

$$I^- + I_2 \to I_3^-. \tag{8}$$

In a previous study on the photodissociation of CHI₃ in methanol, Lee *et al.* reported the rate constant of 3.1×10^{10} M⁻¹ s⁻¹ for the recombination of I radicals to form I₂ in methanol.³⁴ This rate constant is smaller than that $(7.69 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1})$ for reaction (5), which indicates that in methanol, the formation of I₂⁻ is kinetically favored over the formation of I₂. However, a separate simulation including reaction (7) occurring with the previously reported bimolecular rate constant shows that not only I₂⁻ but also a nonnegligible amount of I₂ can be formed. To examine whether reaction (7) contributes to the photodissociation of CH₂I₂, we considered reaction (7) in all three kinetic models (that is, heterolysis, homolysis, and solvolysis). If reaction (7) is forced to occur with the previously reported bimolecular rate constant for the formation of I₂, the fit qualities deteriorate, and if the bimolecular rate constant is allowed to vary, the concentration of I₂ converges to zero, indicating that reaction (7) is not involved. Thus, under our experimental condition, the formation of I₂ via reaction (7) does not occur and, instead, I₃⁻ is formed through reactions (5) and (6) in the photodissociation of CH₂I₂. The absence of reaction (7) is consistent with the results of previous studies using TA spectroscopy¹³ and TRXL,^{20,21} but its origin is not clear. Similarly, for the photolysis of I₃⁻, the TRXL measurement showed that reaction (7) does not occur.⁴⁰

From the GF analysis of our TRXL data, it was found that reaction (6), which occurs subsequently to reaction (5), occurs with a rate constant of 3.28×10^{10} M⁻¹ s⁻¹. Although we found that the heterolysis model is the most suitable mechanism for the formation of Ifrom iso-CH₂I-I, we tested other various kinetic models where one or more of the key reaction pathways, for example, reactions (3^{**}) , (5), and/or (6) are removed from the heterolysis model so that the significance of each removed pathway can be estimated. Removal of any pathway from the complete heterolysis model results in worse fitting of the experimental $q\Delta S(q)$ curves than fitting with the complete heterolysis model, thus confirming that each of the constituent pathways of the heterolysis model is essential. Additionally, we also tested the significance of the formation of C₂H₄I₂ by the bimolecular recombination of CH_2I · (CH_2I · + CH_2I · $\rightarrow C_2H_4I_2$). Addition of this reaction step to the heterolysis kinetic model worsens the fit, confirming that this pathway is not operational within the investigated time window. We also tested a kinetic model where both heterolysis and homolysis are involved. In this case, the additional I atoms produced by homolysis should be combined to form I2 via reaction (7), but it was already demonstrated above that the formation of I2 was not observed in our TRXL data, indicating that reaction (7) does not occur. Therefore, we can exclude the occurrence of homolysis from the kinetic model for the photodissociation of CH₂I₂.

Comparison with other iodine-containing compounds

To explain the unique photochemical behavior of CH_2I_2 in methanol in contrast to other iodine-containing compounds, we

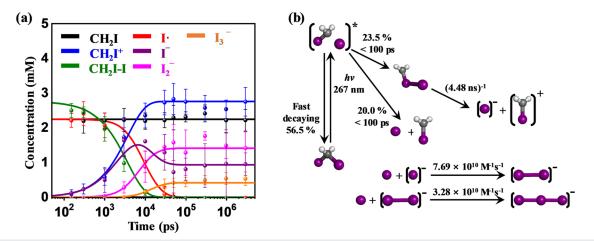


FIG. 4. (a) Time-dependent concentrations of chemical species involved in the photodissociation of CH₂I₂ in methanol based on the heterolysis model and (b) its overall reaction mechanism.

performed quantum chemical calculations for a series of iodine compounds, CH₂I₂, CHI₃, and C₂H₄I₂, each of which generates an isomer containing an I-I bond via photodissociation, and their isomers in the environment of a polar solvent. In particular, from the quantum chemical calculations, we obtained the dipole moment values of 8.89 D, 13.32 D, and 2.40 D for the CH₂I-I, CHI₂-I, and C₂H₄I-I isomers, respectively. Also, the partial charge at the terminal I atom of the I-I group of each isomer was examined and their values were calculated to be -0.571, -0.671, and -0.073 for CH₂I-I, CHI₂-I, and C₂H₄I-I, respectively. According to the chemical intuition of electronegativity, a molecule of higher polarity should have higher probability of undergoing heterolysis, especially in a polar solvent like methanol. Therefore, we can infer that the probability of heterolysis becomes higher for the isomers with higher dipole moment and higher partial charge at the terminal I atom, that is, in the order of $CHI_2-I > CH_2I-I > C_2H_4I-I$.

This predicted order of reactivity for the three isomers is consistent with the energetics of the heterolysis reactions for the three isomers calculated with a DFT method (MN12-SX/AVTZ), that is, higher energy is required for the endothermic heterolysis reaction in the order of CHI₂-I < CH₂I-I < C₂H₄I-I, as shown in Fig. S4. First, it should be noted that the C₂H₄I-I isomer has a bridged conformation, which has a relatively high symmetry compared with the structures of the other isomers, in both polar³² and nonpolar¹¹ solvents according to previous TRXL studies and, as a result, C2H4I-I has a much smaller dipole moment than those of the other isomers, thus making it difficult for the heterolysis to occur. Accordingly, the heterolysis of C2H4I-I is an endothermic reaction that requires the highest energy among the heterolysis reactions of the three isomers (see Fig. S4). Also, the heterolysis of C₂H₄I-I (114.6 kJ/mol) is energetically unfavorable compared with its dissociation into C₂H₄ and I₂ (13.3 kJ/mol), and therefore, it does not occur.

By contrast, CHI₂-I has the largest dipole moment among the three isomers and therefore the heterolysis of CHI2-I should occur most easily among the three isomers, which is supported by the smallest reaction energy required for the heterolysis of CHI2-I as shown in Fig. S4. However, any signature of the negative ionic species $(I_2^- \text{ and } I_3^-)$ was not observed in a previous study on the photodissociation of CHI₃ in methanol using TRXL and timeresolved X-ray absorption spectroscopy.^{28,34} In fact, in that same study, the CHI₂-I isomer was not observed, either, within the signalto-noise ratio of those measurements. While there was a timeresolved spectroscopic study that reported the formation of the ^{-31,35} the absence of such signature in the X-ray CHI₂–I isomer,²⁹ scattering and absorption signals, which are sensitive to molecular structure and of which the intensities are proportional to the populations of chemical species, indicates that the formation of the CHI2-I isomer must be a minor reaction pathway, at best, for the photodissociation of CHI3 in methanol. Therefore, despite the high polarity of the CHI₂-I isomer, the negative ionic photoproducts such as I₂⁻ and I3⁻ may not be observed in the photodissociation of CHI3 due to a low yield of the CHI2-I isomer not because of the low probability of the CHI₂-I isomer undergoing the heterolysis. Conversely, despite the high probability of heterolysis for CHI₂-I, the absence of the negative ionic species $(I_2^- \text{ and } I_3^-)$ in the photodissociation of CHI3 can serve as another evidence that supports the very low yield of the CHI₂-I isomer proposed in the previous TRXL study.²

Thus, we can conclude that the heterolysis occurs only for the CH_2I-I isomer, which has high polarity and is produced with a high yield.

CONCLUSIONS

In this study, we investigated the photodissociation dynamics of CH_2I_2 in methanol using TRXL and unveiled the mechanism and the origin of the formation of I_2^- and I_3^- , which are observed only in CH_2I_2 but not in other iodine-containing compounds such as CHI_3 , $C_2H_4I_2$, I_2 , I_3^- , and $C_2F_4I_2$. The analysis of our TRXL data supports that *iso*- CH_2I-I is decomposed via heterolysis into CH_2I^+ and I^- and subsequently I^- undergoes nongeminate recombination with I· to form I_2^- and I_3^- . Based on the findings of this work, we propose that the high polarity of the *iso*- CH_2I-I isomer and its subtle interaction with the polar solvent are responsible for the unique photochemistry of CH_2I_2 in the polar solvent, that is, the formation of negative ionic products such as I_2^- and I_3^- via heterolysis. The photodissociation of $CH_2I_2I_2$ is a good example showing the dramatic effect of the complex and delicate solute-solvent interaction on the outcome of a chemical reaction.

EXPERIMENTAL PROCEDURES

The TRXL experiment conducted as part of this study was performed at the NW14A beamline in the High Energy Accelerator Research Organization (KEK). The full methods including the DFT calculations, MD simulations, global fit analysis, and TRXL setups are provided in the supplementary material.

SUPPLEMENTARY MATERIAL

The supplementary material contains detailed methods and data acquisition, data processing, global fit analysis, molecular dynamics simulation for the solute-solvent cross term, computational details, sine-Fourier transform, and Figs. S1–S5.

ACKNOWLEDGMENTS

This work was supported by the Institute for Basic Science (No. IBS-R004). This work was performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2014G123). This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant Nos. NRF-2016R1E1A1A01941978 and NRF-2016R1D1A1B03933120). This work was also supported by JSPS KAKENHI Grant Number 17H06438 in Scientific Research on Innovative Areas "Innovations for Light-Energy Conversion (I4LEC)".

The authors declare no competing financial interests.

REFERENCES

¹A. S. Rury, T. E. Wiley, and R. J. Sension, Acc. Chem. Res. 48, 860 (2015).

²J. H. Lee, M. Wulff, S. Bratos, J. Petersen, L. Guerin, J. C. Leicknam, M. Cammarata, Q. Kong, J. Kim, K. B. Møller, and H. Ihee, J. Am. Chem. Soc. 135, 3255 (2013).

³V. A. Apkarian and N. Schwentner, Chem. Rev. 99, 1481 (1999).

⁴B. D. Smith, K. G. Spears, and R. J. Sension, J. Phys. Chem. A **120**, 6575 (2016).

⁵D. A. Braden, E. E. Parrack, and D. R. Tyler, Coord. Chem. Rev. 211, 279 (2001).
⁶J. Yao, H. S. Im, M. Foltin, and E. R. Bernstein, J. Phys. Chem. A 104, 6197 (2000).
⁷M. S. Zakerhamidi, A. Ghanadzadeh, H. Tajalli, M. Moghadam, M. Jassas, and R. Hosseini Nia, Spectrochim. Acta, Part A 77, 337 (2010).

⁸B. Gilbert, J. E. Katz, N. Huse, X. Zhang, C. Frandsen, R. W. Falcone, and G. A. Waychunas, Phys. Chem. Chem. Phys. **15**, 17303 (2013).

⁹K. H. Kim, H. Ki, J. H. Lee, S. Park, Q. Kong, J. Kim, J. Kim, M. Wulff, and H. Ihee, Phys. Chem. Chem. Phys. 17, 8633 (2015).

¹⁰K. H. Kim, J. H. Lee, J. Kim, S. Nozawa, T. Sato, A. Tomita, K. Ichiyanagi, H. Ki, J. Kim, S. I. Adachi, and H. Ihee, Phys. Rev. Lett. **110**, 165505 (2013).

¹¹J. Kim, J. H. Lee, J. Kim, S. Jun, K. H. Kim, T. W. Kim, M. Wulff, and H. Ihee, J. Phys. Chem. A **116**, 2713 (2012).

¹²C. W. Ahn, H. Ki, J. Kim, J. Kim, S. Park, Y. Lee, K. H. Kim, Q. Kong, J. Moon, M. N. Pedersen, M. Wulff, and H. Ihee, J. Phys. Chem. Lett. 9, 647 (2018).

¹³ A. N. Tarnovsky, V. Sundstrom, E. Åkesson, and T. Pascher, J. Phys. Chem. A **108**, 237 (2004).

¹⁴A. N. Tarnovsky, J.-L. Alvarez, A. P. Yartsev, V. Sundström, and E. Åkesson, Chem. Phys. Lett. **312**, 121 (1999).

¹⁵K. I. Saitow, Y. Naitoh, K. Tominaga, and K. Yoshihara, Chem. - Asian J. 3, 696 (2008).

¹⁶X. Guan, X. Lin, W. M. Kwok, Y. Du, Y. L. Li, C. Zhao, D. Wang, and D. L. Phillips, J. Phys. Chem. A **109**, 1247 (2005).

¹⁷X. Zheng and D. L. Phillips, J. Phys. Chem. A **104**, 6880 (2000).

¹⁸W. M. Kwok, C. Ma, A. W. Parker, D. Phillips, M. Towrie, P. Matousek, X. Zheng, and D. L. Phillips, J. Chem. Phys. **114**, 7536 (2001).

¹⁹Y. L. Li, D. Wang, K. H. Leung, and D. L. Phillips, J. Phys. Chem. A **106**, 3463 (2002).

²⁰ J. Vincent, M. Andersson, M. Eklund, A. B. Wöhri, M. Odelius, E. Malmerberg, Q. Kong, M. Wulff, R. Neutze, and J. Davidsson, J. Chem. Phys. 130, 154502 (2009).

²¹ J. Davidsson, J. Poulsen, M. Cammarata, P. Georgiou, R. Wouts, G. Katona, F. Jacobson, A. Plech, M. Wulff, G. Nyman, and R. Neutze, Phys. Rev. Lett. 94, 245503 (2005). ²² D. C. Blomstrom, K. Herbig, and H. E. Simmons, J. Org. Chem. **30**, 959 (1965).
 ²³ P. J. Kropp, Acc. Chem. Res. **17**, 131 (1984).

²⁴ M. Odelius, M. Kadi, J. Davidsson, and A. N. Tarnovsky, J. Chem. Phys. **121**, 2208 (2004).

²⁵ P. M. Kroger, P. C. Demou, and S. J. Riley, J. Chem. Phys. 65, 1823 (1976).

²⁶M. Kawasaki, S. J. Lee, and R. Bersohn, J. Chem. Phys. **63**, 809 (1975).

²⁸K. H. Kim, J. Kim, K. Y. Oang, J. H. Lee, D. Grolimund, C. J. Milne, T. J. Penfold,

S. L. Johnson, A. Galler, T. W. Kim, J. G. Kim, D. Suh, J. Moon, J. Kim, K. Hong, L. Guérin, T. K. Kim, M. Wulff, C. Bressler, and H. Ihee, Phys. Chem. Chem. Phys. 17, 23298 (2015).

²⁹X. Zheng and D. L. Phillips, Chem. Phys. Lett. **324**, 175 (2000).

³⁰Y. L. Li, D. M. Chen, D. Wang, and D. L. Phillips, J. Org. Chem. 67, 4228 (2002).
 ³¹M. Wall, A. N. Tarnovsky, T. Pascher, V. Sundström, and E. Åkesson, J. Phys. Chem. A 107, 211 (2003).

³² H. Ihee, M. Lorenc, T. K. Kim, Q. Kong, M. Cammarata, J. H. Lee, S. Bratos, and M. Wulff, <u>Science</u> **309**, 1223 (2005).

³³ H. L. Jae, K. K. Tae, J. Kim, Q. Kong, M. Cammarata, M. Lorenc, M. Wulff, and H. Ihee, J. Am. Chem. Soc. **130**, 5834 (2008).

³⁴J. H. Lee, J. Kim, M. Cammarata, Q. Kong, K. H. Kim, J. Choi, T. K. Kim, M. Wulff, and H. Ihee, Angew. Chem., Int. Ed. 47, 1047 (2008).

³⁵P. Z. El-Khoury, W. M. Kwok, X. Guan, C. Ma, D. L. Phillips, and A. N. Tarnovsky, ChemPhysChem 10, 1895 (2009).

³⁶K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, J. Synchrotron Radiat. 16, 391 (2009).

³⁷F. Weigend and A. Baldes, J. Chem. Phys. **133**, 174102 (2010).

³⁸C. Tao, C. Mukarakate, Y. Mishchenko, D. Brusse, and S. A. Reid, J. Phys. Chem. A **111**, 10562 (2007).

³⁹C. Tao, C. Mukarakate, and S. A. Reid, J. Am. Chem. Soc. **128**, 9320 (2006).

⁴⁰K. H. Kim, H. Ki, K. Y. Oang, S. Nozawa, T. Sato, J. Kim, T. K. Kim, J. Kim, S. I. Adachi, and H. Ihee, ChemPhysChem 14, 3687 (2013).

²⁷K. H. Kim, J. Kim, J. H. Lee, and H. Ihee, Struct. Dyn. 1, 011301 (2014).