CHEMISTRY A European Journal

Supporting Information

Proton Transfer Accompanied by the Oxidation of Adenosine

Jungkweon Choi⁺,^[a, b] Sachiko Tojo⁺,^[c] Doo-Sik Ahn,^[a, b] Mamoru Fujitsuka,^{*[c]} Shunichi Miyamoto,^[c] Kazuo Kobayashi,^[c] Hyotcherl Ihee,^{*[a, b]} and Tetsuro Majima^{*[c]}

chem_201900732_sm_miscellaneous_information.pdf

Supporting information

Proton transfer accompanied with oxidation reaction of adenosine

Jungkweon Choi,^{[a,b]†} Sachiko Tojo,^{[c]†} Doo-Sik Ahn,^[a,b] Mamoru Fujitsuka,^{*[c]} Shunichi Miyamoto,^[c] Kazuo Kobayashi,^[c] Hyotcherl Ihee^{*[a,b]} and Tetsuro Majima^{*[c]}

[a] Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea.

[b] Department of Chemistry and KI for Biocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.

[c] The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.

[†] These authors contributed equally.

*Co-corresponding authors: Mamoru Fujitsuka, Hyocherl Ihee, and Tetsuro Majima

E-mail: fuji@sanken.osaka-u.ac.jp

hyotcherl.ihee@kaist.ac.kr

majima@sanken.osaka-u.ac.jp

Figure S1. a) Experimental Raman spectrum of AH^+ (black line) and theoretical Raman spectra of AH^+ (red line: $AH^+(N1+H^+)$, orange line: $AH^+(N1+H^+)$, and blue line: $AH^+(N7+H^+)$). b) Experimental and theoretical Raman spectra of **A**. All simulated Raman spectra were calculated with B3LYP-D3/6-311++G(d,p)method. Scaling factor: 0.982 for $AH^+(N1+H^+)$ and **A**.

Figure S2. Experimental Raman spectrum of **A** (black) at neutral pH and theoretical Raman spectra of **A** (red), H-bonded adenosine dimer (green), and stacked adenosine dimer (blue).

Figure S3. a) Experimental and theoretical Raman spectra of $AH^{\bullet 2+}(N1+H^+)$. b) Experimental and theoretical Raman spectra of $A^{\bullet}(N10-H)$. All simulated Raman spectra were calculated with (U)B3LYP-D3/6-31G(d) method. Scaling factors: 0.93 and 0.982 for $AH^{\bullet 2+}(N1+H^+)$ and $A^{\bullet}(N10-H)$, respectively.

Figure S4. a) Raman spectrum measured at pH 2.3. b) Raman spectra of $AH^{\bullet 2+}(N1+H^+)$ calculated with (U)B3LYP-D3/6-31G(d) method. Scaling factor: 0.93. c) Raman spectra of $A^{\bullet +}$ calculated with (U)B3LYP-D3/6-31G(d) method. Scaling factor: 0.982. d) Raman spectra of $A^{\bullet +}$ calculated with (U)B3LYP-D3/6-31G(d) method. Scaling factor: 0.93.

