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I. Supplementary Discussions 

A. Theory of LCF using the direct method 

 Let us treat a spectrum in experimental time-resolved data as a column vector. This 

treatment is acceptable because even when the experimental data are obtained in the form of a 

multidimensional matrix, they can be easily transformed into a column vector using 

vectorization. For example, in the case of TRXL, the difference scattering curve at a specific 

time delay, ΔS(q, t), is expressed as follows: 

  ΔS(q, t) = [ΔS(q
1
, t), ΔS(q

2
, t), … , ΔS(q

N
, t),]𝑇  (S1) 

where T denotes the transpose of a row vector to a column vector. Further, the series of time-

resolved data can be approximated as the sum of their time-independent spectral components 

as follows:  

  ΔS(q, t1) = ΔSsum(q, t1) + X(q, t1) 

= α1(t1) · C1(q) + α2(t1) · C2(q) + ⋯ + αn(t1) · Cn(q) + X(q, t1) 

ΔS(q, t2) = ΔSsum(q, t2) + X(q, t2) 

= α1(t2) · C1(q) + α2(t2) · C2(q) + ⋯ + αn(t2) · Cn(q) + X(q, t2) 

                                                                                       ⋮ 

ΔS(q, t𝑛) = ΔSsum(q, t𝑛) + X(q, t𝑛) 

= α1(t𝑛) · C1(q) + α2(t𝑛) · C2(q) + ⋯ + αn(t𝑛) · Cn(q) + X(q, t𝑛) 

(S2) 

where Ci(q) are the spectral components of the signal, αi(tj) are their weights at time delay 

tj , ΔSsum(q, tj)  is the approximated signal as the sum of the time-independent spectral 

components, and X(q, tj) is a residual signal in ΔS(q, tj) for the approximation. When the 

spectral components, {Ci(q)}i, are orthogonal as in the case of singular spectral modes in SVD 

analysis, the weight of a spectral component, Ci(q) , can be easily calculated using vector 

projection as follows: 

  
αi(tj) =

< ΔS(q, tj), Ci(q) >

< Ci(q), Ci(q) >
 

 
(S3) 

where < 𝐴, 𝐵 >  denotes the inner product between two vectors, A and B. As shown in 

Equations (S1)–(S3), direct arithmetical vector projection gives the weight of a component. 

However, if {Ci(q)}i are not orthogonal, such a simple vector projection does not yield their 

exact weights in the data.  

 The non-orthogonal decomposition of SANOD is based on LCF of experimental data 
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as the sum of the signal components. SANOD uses non-orthogonal signal components as the 

initial input and obtain their weights. For the latter step, SANOD utilizes the direct method 

which refers to linear algebraic methods to yield the solution of linear equations without 

numerical iterative minimization. Among the direct methods, we decided to use QR 

decomposition to decompose the experimentally observed signal into a sum of the non-

orthogonal components, {Ci(q)}i.  

The entire procedure of SANOD consists of four steps, and it can be briefly described 

as follows (see Figure S1). The first step is QR decomposition, which is a well-established 

mathematical procedure for decomposing a matrix into a product of two matrices Q and R, 

where Q is an orthogonal matrix and R is an upper triangular matrix. A matrix is prepared by 

horizontally concatenating a set of non-orthogonal components, {Ci(q)}i. Then, the matrix is 

decomposed to yield the Q and R matrices. There are several numerical methods for QR 

decomposition, such as the Gram-Schmidt (GS) process1-5, Householder reflections6-10, and 

Givens rotations10,11, each of which has its own advantages and disadvantages. In this study, 

the GS process, which is a textbook example of a method for orthonormalization of a set of 

vectors, is implemented for the QR decomposition, because it is easy to visualize and express 

using mathematical formula. The GS orthonormalization of a set of non-orthogonal signal 

components, {Ci(q)}i , yields a set of orthonormalized signal components, {Oi(q)}i  (see 

Figure S1b). The process can be formulated as follows:  

 
O1 = norm (

C1

|C1|
) =

C1

β
1,1

 

O2 = norm(C2 − proj(C2, O1)) 

=
(C2 − β

1,2
 · O1)

β
2,2

 

O3 = norm(C3 − proj(C3, O1) − proj(C3, O2)) 

=
(C3 − β

1,3
 · O1 − β

2,3
 · O2)

β
3,3

 

⋮ 

On = norm(Cn − proj(Cn, O1) − proj(Cn, O2) − ⋯ 

 

(S4) 
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  − proj(Cn, On-1)) 

=
(Cn − β

1,n
 · O1 − β

2,n
 · O2 − ⋯ − β

n-1,n
 · On-1)

β
n,n

 
 

while β
i, j

  are constants, norm(A)  denotes the normalized vector of A, which can be 

expressed as A /√< A, A >, |𝐴| denotes the magnitude of vector A, and proj(A, B) stands 

for the projection of vector A to vector B, which can be expressed as 

  < A, B >

< B, B >
 · B 

(S5) 

Note that β
i, j 

= < Cj(q), Oi(q) > . It is obvious that the resulting {Oi(q)}i  are orthogonal. 

Horizontal concatenation of {Oi(q)}i yields the matrix Q, and the matrix with the element β
i, j 

 

in its ith row and jth column is the matrix R.  

The second step is to calculate the weight of a signal component, Cn(q), by using the 

orthogonalized components (see Figure S1c). From Equation (S4), {Ci(q)}i can be expressed 

in terms of {Oi(q)}i as 

  C1 = β
1,1

 · O1 

C2 = β
1,2

 · O1 + β
2,2

 · O2 

C3 = β
1,3

 · O1 + β
2,3

 · O2 + β
3,3

 · O3 

                              ⋮ 

Cn = β
1,n

 · O1 + β
2,n

 · O2 + ⋯ + β
n,n

 · On 

(S6) 

Substituting Equation (S6) into Equation (S2) yields 

  ΔS(q, t𝑗) = ΔSsum(q, tj) + X(q, tj) 

= α1(tj) ∗ C1(q) + α2(tj) ∗ C2(q) + ⋯ + αn(tj) ∗ Cn(q) + X(q, tj) 

= β
1,1

 · α1(tj) · O1(q) + α2(tj) · (β
1,2

 · O1(q) + β
2,2

 · O2(q)) + ⋯ 

       + αn(tj) · (β
1,n

 · O1(q) + β
2,n

 · O2(q) + ⋯ + β
n-1,n

 · On-1(q)

+ β
n,n

 · On(q)) + X(q, tj) 

(S7) 

In Equation (S7), the only constant in the term of On(q) is β
n,n

 · αn(tj). Therefore, by 

taking the inner product with On(q)  on both sides of Equation (S7), αn(tj)  can be 

arithmetically calculated as 

  

< ΔS(q, tj), On(q) > = β
n,n

 · αn(tj) · < On(q), On(q) > 
(S8) 
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= β
n,n

 · αn(tj) 

αn(t𝑗) =
< ΔS(q, tj), On(q) >

β
n,n

 

The first step, QR decomposition, is essential for the second step because the weights of the 

non-orthogonalized signal components, αn(tj), can be simply calculated on the basis of the 

orthogonal properties of {Oi(q)}i.  

The third step is to remove the contribution of the Cn(q) component from the signal 

(see Figure S1d). By using the weight αn(tj)  calculated in the second step, the known 

contribution of the component Cn(q) can be subtracted from the signal as follows: 

ΔS(q, tj) − αn(tj) · Cn(q)

= α1(tj) · C1(q) + α2(tj) · C2(q) + ⋯ + αn-1(tj) · Cn-1(q) + X(q, tj) 

            = α1(tj) · β
1,1

 · O1(q) + α2(tj) · (β
1,2

 · O1(q) + β
2,2

 · O2(q)) + ⋯ 

            + αn-1(tj)  · (β
1,n-1

 ·O1(q) + ⋯ + β
n-1,n-1

 · On-1(q)) + X(q, tj) 

(S9) 

The fourth step is to simply repeat the second and third steps until the weights of all 

the components are calculated. As the contribution of the nth component, Cn(q), is subtracted 

from the signal, the remaining signal, ΔS(q, tj) − αn(tj) · Cn(q), consists of n–1 components 

from C1(q)  to Cn-1(q) . By applying the second step to the remaining signal, the weight, 

αn-1(tj), of a signal component, Cn-1(q), can be calculated as follows. 

< ΔS(q, tj) − αn(tj) · Cn(q), On-1(q) >                   

            = β
n-1,n-1

 · αn-1(tj) · < On-1(q), On-1(q) > 

            = β
n-1,n-1

 · αn-1(tj) 

             αn-1(tj) =
< ΔS(q, tj) − αn(tj) · Cn(q), On-1(q) >

β
n-1,n-1

 

(S10) 

Repeating the third step to remove the contribution of the (n–1)th component yields 

the remaining signal, which consists of n–2 components. By repeating these processes until the 

last weight, α1(tj), is obtained, the set of the weights, {αi(tj)}i, for all the components at a 

certain time delay, tj, is completed. Again, by repeating the procedure for the entire time series 

of the experimental data, the time-dependent profile of the contribution of each component, 

{{αi(tj)}i}j, is obtained. These profiles, which are called chronograms, show when and which 

processes occur as the reaction progresses. As shown by Equations (S1), (S2), and (S4)–(S10), 
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the entire procedure to retrieve {{αi(tj)}i}j  is a fully arithmetic procedure, i.e., no iterative 

fitting is required. Accordingly, the procedure is not only simple and fast but also yields a 

unique optimal solution. 

Note that the chronogram {{αi(tj)}i}j  obtained from SANOD is the solution that 

minimizes the norm of each X(q, tj)  in Equation (S2). In other words, the method finds 

{{αi(tj)}i}j that minimizes the magnitude of the residual signals; thus, the solution obtained 

from SANOD is the same as that obtained from least-squares fitting.1 Moreover, it is possible 

to modify the SANOD procedure to obtain {{αi(tj)}i}j  that minimizes the weighted least 

square, such as the chi-square, which exploits the experimental standard deviations. The 

modification and related discussion are presented in the following section. In the 

demonstrations presented in the main text, we use the modified SANOD, which minimizes the 

chi-square of the residual signal. 

 

B. Relationship between SANOD, least-squares minimization, and chi-squared 

minimization 

Part 1. Relationship between SANOD and least-squares minimization 

 As mentioned in the main text, {αi(tj)}i, the weights of the components at a certain 

time delay, tj, obtained using SANOD are identical to the solution of least-squares fitting of 

the following equation:  

  S(q, tj) = Ssum(q, tj) + X(q, tj) 

= α1(tj) ∙ C1(q) + α2(tj) ∙ C2(q) + ⋯ + αn(tj) ∙ Cn(q) + X(q, tj) 
 (S11) 

This can be proved as follows. The orthonormalized components of {Ci(q)}i are denoted as 

{Oi(q)}i. Then, as shown in Equation (S7) in the main text, Equation (S11) can be expressed in 

terms of {Oi(q)}i as follows: 

  S(q, tj) = Ssum(q, tj) + X(q, tj) 

= α1(tj) ∙ C1(q) + α2(tj) ∙ C2(q) + ⋯ + αn(tj) ∙ Cn(q) + X(q, tj) 

= β
1,1

∙ α1(tj) ∙ O1(q) + α2(tj) ∙ (β
1,2

∙ O1(q) + β
2,2

∙ O2(q)) + ⋯

+  αn(tj) ∙ (β
1,n

∙ O1(q) + ⋯ + β
n,n

∙ On(q)) + X(q, tj) 

 

(S12) 

The residual X(q, tj) can also be expressed as a sum of {Oi(q)}i components and the residual 

component, Z(q, tj),which is orthogonal to all the Oi(q)s as follows.  
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  X(q, tj) = γ
1
(tj) ∙ O1(q) + γ

2
(tj) ∙ O2(q) + ⋯ + γ

n
(tj) ∙ On(q) + Z(q, tj) (S13) 

Substitution of Equation (S13) into Equation (S12) yields the following equation: 

  S(q, tj) = O1(q) ∙ (β
1,1

∙ α1(tj) + ⋯ + β
1,n

∙ αn(tj) + γ
1
(tj)) + ⋯ 

             + On(q) ∙ (β
n,n

∙ αn(tj) + γ
n
(tj)) + Z(q, tj) 

(S14) 

As mentioned in Equation (S8), αn(tj) is obtained as follows: 

  
αn(tj) =

< S(q, tj), On(q) >

β
n,n

 (S15) 

Substitution of Equation (S14) into Equation (S15) yields the following equation because 

On(q) is orthogonal to the other Oi(q)s and Z(q, tj): 

  
αn(t𝑗) =

< S(q, tj), On(q) >

β
n,n

 

=
β

n,n
∙ αn(tj) + γ

n
(tj)

β
n,n

 

= αn(tj) +
γ

n
(tj)

β
n,n

 

(S16) 

Equation (S16) indicates that γ
n
(tj) must be zero. Thus, it can be shown that γ

i
(tj)s are zero 

for all i. Considering Equation (S13), this means that X(q, tj)  is Z(q, tj)  and thereby 

orthogonal to all the Oi(q) s. In summary, SANOD yields the residual component, X(q, tj) , 

which is orthogonal to all the Oi(q)s. 

Now, let us consider what is X(q, tj) obtained from least-squares fitting. According to 

its definition, least-squares fitting finds {αi(tj)}i  that minimizes the square of the norm of 

X(q, tj) . Again, using Equation (S13), X(q, tj)  can be expressed as the sum of {Oi(q)}i 

components and the residual. Following Equation (S13), the square of the norm of X(q, tj) can 

be expressed as follows: 

  |X(q, tj)|
2

= γ
1

2(t𝑗) + γ
2

2(tj) + ⋯ + γ
n

2(tj) + |Z(q, tj)|
2
 (S17) 

According to Equation (S17), |X(q, tj)|
2
  is minimized when γ

i
(tj) s are zero for all i. This 

means that the least-squares fitting yields {αi(tj)}i that makes γ
i
(tj)s zero for all i, i.e., X(q, 

tj) equal to Z(q, tj) and consequently orthogonal to all the Oi(q)s. Previously, we showed that 

SANOD also yields the residual X(q, tj), which is orthogonal to the Oi(q)s. Thus, so far we 
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have proven that both SANOD and least-squares fitting yield X(q, tj), which is orthogonal to 

the Oi(q)s. Such a residual component is uniquely defined as follows: 

  X(q, tj) = S(q, tj) - ∑ proj(S(q, tj), O𝑖)

𝑖

 (S18) 

The uniqueness of X(q, tj) ensures that the residual from SANOD is identical to the residual 

from the least-squares fitting. As the residuals are the same for SANOD and the least-squares 

fitting, Ssum(q, tj) s also should be the same for the two methods. When Ssum(q, tj)  is 

determined, αi(tj) s are uniquely derived from Ssum(q, tj)  if {Ci(q)}i  are linearly 

independent. Suppose that {Ci(q)}i  are linearly independent and there are two different 

solutions of αi(tj)s, αi'(tj)s and αi''(tj)s, yielding the same Ssum(q, tj). Then, the following 

equations hold. 

  
Ssum(q, tj) = ∑ αi'(tj) · 

𝑖

Ci(q) (S19) 

  
Ssum(q, tj) = ∑ αi''(tj) · 

𝑖

Ci(q) (S20) 

As αi'(tj) s and αi''(tj) s are different, there exists an index d that satisfies αd'(tj) ≠ αd''(tj) . 

Substitution of Equation (S20) into Equation (S19) yields the following equations: 

  ∑ αi'(tj) · 

𝑖

Ci(q) = ∑ αi''(tj) · 

𝑖

Ci(q) (S21) 

  ∑ {(α
i
'(tj) - αi''(tj)) · 

𝑖

Ci(q)} =0 (S22) 

  ∑ {(α
i
'(tj) - αi''(tj)) · 

𝑖≠𝑑

Ci(q)} =(α
d
''(tj) - αd'(tj)) · Cd(q) (S23) 

Equation (S23) contradicts the assumption that {Ci(q)}i  are linearly independent. The 

contradiction means that once Ssum(q, tj)  is determined and {Ci(q)}i  are linearly 

independent, then {αi(tj)}i  must be uniquely determined. As Ssum(q, tj)  from SANOD is 

identical to Ssum(q, tj) from the least-squares fitting, finally, it can be concluded that {αi(tj)}i 

obtained using SANOD is identical to that obtained using the least-squares fitting when 

{Ci(q)}i are linearly independent.   
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Part 2. Modification of SANOD to yield the solution of chi-squared minimization 

 When analyzing experimental data, chi-square fitting, which implements the 

information of standard deviations associated with each data point, is normally preferred over 

least-squares fitting. Accordingly, it would be highly desirable if SANOD can be modified to 

obtain the same solution as that of chi-square fitting.  

 The modification is as follows. The key idea of the modification is to scale the signal 

components and the experimental data using the standard deviations, and to apply SANOD to 

the scaled data using the scaled components. This can be done by orthonormalization of the 

scaled components, {Ci(q)/σ(q, tj)}i, to yield {O'i(q, tj)}i. Then, according to Equation (S17), 

the scaled experimental data can be expressed in terms of {O'i(q, tj)}i as follows:  

  S(q, tj)

σ(q, tj)
=
Ssum(q, tj)

σ(q, tj)
+

X(q, tj)

σ(q, tj)
 

= α'1(tj) ∙
C1(q)

σ(q, tj)
+ α'2(tj) ∙

C2(q)

σ(q, tj)
+ ⋯ + α'n(tj) ∙

Cn(q)

σ(q, tj)
+

X(q, tj)

σ(q, tj)
 

= α'1(t𝑗) ∙ β'1,1 ∙ O'1(q, tj) + α'2(t𝑗) ∙ (β'1,2 ∙ O'1(q, tj) 

 + β'2,2 ∙ O'2(q, tj)) + ⋯ + α'n(t𝑗) ∙ (β'1,n ∙ O'1(q, tj) + ⋯ 

            + β'n,n ∙ O'n(q, tj)) +
X' (q, tj)

σ(q, tj)
 

   

(S24) 

For Equation (S18), αis, β
i,j

s, and Oi(q, tj)s in Equation (S7) are substituted by α'is, β'
i,j

s, 

and O'i(q, tj)s to emphasize that the constants and the orthonormalized components obtained 

from SANOD are different from those obtained from the modified SANOD. Clearly, the 

resulting equation in terms of {Oi(q, tj)}i  is identical to Equation (S12), except that the 

residual term X(q, tj)  is substituted by a scaled residual, X' (q, tj) /σ(q, tj) . Therefore, by 

recalling the discussion in Part 1, it can be deduced that SANOD on the scaled experimental 

data using scaled signal components will yield {α'i(tj)}i that minimizes the square of the norm 

of X' (q, tj)/σ(q, tj). Because the square of the norm of X' (q, tj)/σ(q, tj), |X' (q, tj)/σ(q, tj)|
2, is 

identical to the chi-square by its definition, the modified SANOD minimizes the chi-square. 

Accordingly, the modified SANOD yields the same result as the chi-square fitting. Note that 

the orthonormalized scaled signal components, {O'i(q, tj)}i, are dependent on the time delay 

unlike the case of normal SANOD. Clearly, the standard deviation, σ(q, tj), is dependent on 
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the time delay. Consequently, the scaled signal components, {Ci(q)/σ(q, tj)}i , and their 

orthonormalized ones, {O'i(q, tj)}i, become dependent on the time delay. 
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C. Discussion regarding the example of the application of SANOD in the section  

C-1 of the main text: 

The method to retrieve the correct shape of the third component 

Normally, the LSVs obtained from SVD do not directly represent physically 

meaningful spectral component. Instead, a physically meaningful spectral component, e.g. a 

species-associated spectrum, is represented as a linear combination of the LSVs. As SANOD 

also uses the LSVs as the spectral components for LCF, to retrieve the correct shape of the 

physically meaningful spectrum and their kinetics, it is required to perform posterior analysis 

after SANOD. The detailed procedure is as follows.  

The first, and the most important step is to build a correct kinetic model basing on the 

prior knowledges. In the example in the section C-1, among the three components used for 

SANOD, the first two components are for the systematic noise of the experiment and are 

prepared by using prior knowledge on the data. Basing on the prior knowledge, it can be 

reasonably modeled without any difficulty that the final chronograms of the two components 

from the posterior analysis should not show any time-dependent trend but noise. In other words, 

the kinetic model for the two components can be constrained as follows. 

  α1'(tj) = α2'(tj) = 0 (S25) 

Primes are attached to the notations of the chronograms in order to distinguish the 

chronograms for the kinetic model from those obtained from SANOD. The kinetic model for 

α'3(tj) is constrained to follow that from SANOD as follows. 

  α3'(tj) = α3(tj) (S26) 

Let the correct shape of the third component, C3 , is C3' . As C3'  should be 

represented as a linear combination of C1, C2, and C3, it can be represented as follows, 

  
C3'(q) = δ · C1(q) + ε · C2(q) + ζ · C3(q)  (S27) 

where δ, ε and ζ are the weights for the linear combination. Substituting Equations 

(S25)-(S27) to Equation (S11) yields 

 S(q, tj) = Ssum(q, tj) + X(q, tj) 

= α1(tj) ∙ C1(q) + α2(tj) ∙ C2(q) + α3(tj) ∙ C3(q) + X(q, tj) 

= α1'(tj) ∙ C1'(q) + α2'(tj) ∙ C2'(q) + α3'(tj) ∙ C3'(q) + X(q, tj) 

 (S28) 
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= α3(tj) ∙ (δ · C1(q) + ε · C2(q) + ζ · C3(q)) + X(q, tj) 

Comparison of the second and the fourth rows in Equation (S28) yields, 

  α1(tj) ∙ C1(q) + α2(tj) ∙ C2(q) + α3(tj) ∙ C3(q)  

             = α3(tj) ∙ (δ · C1(q) + ε · C2(q) + ζ · C3(q))  
(S29) 

Equation (S29) can be solved by finding the set of δ, ε and ζ that fits the following 

equation. 

  (δ · α3(tj) - α1(tj)) ∙ C1(q) + (ε · α3(tj) - α2(tj)) ∙ C2(q)  

          + (ζ · α3(tj) - α3(tj)) ∙ C3(q) = 0  
(S30) 

Since Equation (S30) is linear, the solution of δ, ε and ζ can be solved by using the 

direct method.   
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Proof that regardless of whether U1(q) or (∂S(q)/∂T)ρ is used as the third component 

in SANOD, the resulting α3(t) is the same 

First, let us consider the case when C3 is (∂S(q)/∂T)ρ. Because (∂S(q)/∂T)ρ of water 

is a linear combination of C1, C2, and U1, it can be expressed as follows: 

  
(
∂S(q)

∂T
)

ρ

= μ ∙ C1 + θ ∙ C2 + η ∙ U1 (S31) 

where μ, θ, and η are the weights for the linear combination. Recalling Equation (S4), when 

C3 is (∂S(q)/∂T)ρ, orthonormalization of the three components yields {Oi}i as follows. 

  
O1 =

C1

β
1,1

 

O2 =
(C2 − β

1,2
∙ O1)

β
2,2

 

O3 =
(C3 − β

1,3
∙ O1 − β

2,3
∙ O2)

β
3,3

 

=
(μ ∙ C1 + θ ∙ C2 + η ∙ U1 − β

1,3
∙ O1 − β

2,3
∙ O2)

β
3,3

 

(S32) 

Since β
i,j

=< Cj, Oi >, β
1,3

 and β
2,3

 are expressed as follows: 

 β
1,3

=< C3, O1 > =< μ ∙ C1 + θ ∙ C2 + η ∙ U1, O2 > 

= μ ∙ < C1, O2 > + θ ∙ < C2, O2 > + η ∙ < U1, O2 > 

= μ ∙ β
1,1

∙ < O1, O2 > + θ ∙ < C2, O2 > + η ∙ < U1, 𝑂2 > 

(S33) 

Substitution of Equation (S33) and Equation (S6) into Equation (S32) yields the following 

equation: 

  
O3 =

(μ ∙ C1 + θ ∙ C2 + η ∙ U1 − β
1,3

∙ O1 − β
2,3

∙ O2)

β
3,3

 

=
1

β
3,3

∙ ((μ ∙ β
1,1

∙ O1 + θ ∙ (β
1,2

∙ O1 + β
2,2

∙ O2) + η ∙ U1 

         − (μ ∙ β
1,1

+ θ ∙ β
1,2

+ η ∙ < U1, O1 > ) ∙ O1 

         − (θ ∙ β
2,2

+ η ∙ < U1, O2 > ) ∙ O2) 

   =
(U1− < U1, O1 > ∙ O1− < U1, O2 > ∙ O2) ∙ η

β
3,3

 

(S34) 

For comparison, let us consider the other case when C3  is U1, not (∂S(q)/∂T)ρ . Let the 
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orthonormalization of C1 , C2 , and U1 yield {Oi
′}i . In this case, the orthonormalized 

components can be expressed as follows: 

  
O1

′ =
C1

β
1,1

′ = O1 

O2
′ =

C2 − β
1,2

′ ∙ O1
′

β
2,2

′ = O2 

O3
′ =

U1 − β
1,3

′ ∙ O1
′ − β

2,3

′ ∙ O2
′

β
3,3

′  

=
U1− < U1, O1 > ∙ O1 − < U1, O2 > ∙ O2

β
3,3

′  

=
O3 ∙ β

3,3

η ∙ β
3,3

′ = O3 ∙ ω 

(S35) 

where ω is a constant. Equation (S35) shows that the two vectors O3 ∙ ω and O3
′
 have the 

same direction and the same magnitude. Because O3 and O3
′
 are both unit vectors, it can be 

deduced that ω = 1 and O3 is identical to O3
′
. This proves that as (∂S(q)/∂T)ρ of water is a 

linear combination of C1 , C2 , and U1(q), the GS process of C3  yields the same O3 

regardless of whether C3 is U1(q) or (∂S(q)/∂T)ρ of water. Therefore, according to Equation 

(S8), α3(t) for U1(q) and α3(t) for (∂S(q)/∂T)ρ of water are identical.  
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D. The method to retrieve the correct shape of the signal component from 

erroneous prior knowledge 

When applying prior knowledge on the shape of the signal components to analyze 

experimental data, there is always a possibility that the prior knowledge contains some errors. 

Normally, such errors in the shape of the signal components can significantly affect the result 

of kinetic analysis. For example, the contribution of a signal component can be miscalculated 

if there are errors in the shape of the signal component. This is also true for the case of SANOD. 

To demonstrate how the result of SANOD is affected, the experimental data shown in Figure 

4a was analyzed using SANOD with an erroneous (∂S(q)/ ∂T)ρ component. Three components, 

the two signal components corresponding to the systematic artifacts of the experiment (C1 and 

C2) and an erroneous (∂S(q)/ ∂T)ρ component, were used for SANOD. The erroneous (∂S(q)/ 

∂T)ρ component was prepared by shifting the q-axis, i.e., by multiplying a constant factor (q-

shift) on the q values, of the known correct shape of the signal. A range of factors from 0.99 to 

0.94 were tested. Figure S2a shows the generated curves in comparison with the original, 

correct (∂S(q)/ ∂T)ρ curve. Figure S2c shows α3(t) traces for various q-shift factors. As the 

amount of the error increases, α3(t)  deviates more from α3(t)  obtained from the correct 

(∂S(q)/ ∂T)ρ or U1(q), and accordingly the residual increases as shown in Figure S2d. Also it 

can be shown that the contribution of the erroneous signal component decreases as the more 

error is introduced to the shape of the component. Figure S2e shows the residual when the 

erroneous (∂S(q)/ ∂T)ρ curve with the q-shift of 0.95 is used. The residual is not negligible 

anymore. From the residual, X(q, t), we can extract the component, R(q), that has the α3(t) 

trace by using the following equation. 

  
R(q) = ∑(X(q, t𝑖) ∙ α3(t𝑖))

𝑖

/ ∑(α3
2(t𝑖))

𝑖

 (S36) 

The uppermost curve in Figure S2f is R(q). 

Then by using the posterior analysis described in the Section C of the supplementary 

material, which is the method to retrieve the correct shape of the third component, the wrong 

weights of the artifacts are corrected to yield the artifact-corrected signal component, that is 

C3'(q) in Equation (S27). After that, by adding R(q) to C3'(q), the final reconstructed signal 

component is retrieved. As shown in Figure S2g, the reconstructed (∂S(q)/ ∂T)ρ curve is 

essentially identical to the correct (∂S(q)/ ∂T)ρ curve, indicating that the correct (∂S(q)/ ∂T)ρ 
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can be still obtained by using even the inaccurate, erroneous prior knowledge on the shape of 

the signal component. Nevertheless it is more convenient to use U1(q) instead of the known 

(∂S(q)/ ∂T)ρ to retrieve the correct (∂S(q)/ ∂T)ρ because a smaller number of steps are involved. 
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II. Supplementary Methods 

A. TRXL data of CHI3 in cyclohexane  

The TRXL data on CHI3 in cyclohexane were collected at the ID09B beamline in the European 

Synchrotron Radiation Facility (ESRF). Details on the experimental scheme and data are 

described in the previous publication, which reported the structural dynamics based on global 

analysis.12 

 

B. TRXL data of Au(CN)2
- trimers in water  

The TRXL data on Au(CN)2
- trimers in water were collected at the NW14A beamline in the 

High Energy Accelerator Research Organization (KEK). Details on the experimental scheme 

and data are described in the previous publication, which reported the structural dynamics of 

this molecular system.13,14 

 

C. TRXL experiment of a dye molecule in water  

The TRXL experiment was performed at the BL3 beamline of SPring-8 Angstrom Compact 

Free-Electron Laser (SACLA). A typical setup for TRXL was used in the experiment. A 

femtosecond laser pulse from a Ti:sapphire laser was frequency-doubled to 400 nm and used 

to initiate the reaction. The laser pulse was focused to a spot of 300 × 200 um2 to give 3 mJ/mm2 

fluence on the sample. Subsequently, a femtosecond X-ray pulse generated at SACLA was used 

to probe the progress of the reaction. The X-ray pulse had a center energy of 14.76 keV and 

was focused to a spot of 20 × 20 um2 on the sample. The two-dimensional scattering pattern of 

the X-ray pulse was collected on an area detector (Rayonix LX255-HS) with a sample-to-

detector distance of 24.3 mm. For the sample, an aqueous solution of a dye molecule, 4-amino-

1,1′-azobenzene-3,4′-disulfonic acid monosodium salt, and sodium hydroxide, with 

concentrations of 2 mM and 4 mM, respectively, was used. The sample solution was circulated 

through a sapphire slit nozzle (0.3 mm slit, Kyburz) to form a flat liquid jet. The scattering 

signal from the solution was measured at the following time delays: from –5 ps to 15 ps in 1 ps 

steps, 17 ps, 20 ps, 25 ps, 30 ps, 35 ps, 40 ps, 50 ps, 60 ps, 80 ps, and 100 ps. In addition, the 

signal at a negative time delay, –20 ps, was measured as a reference signal for unexcited 

ground-state samples. The reference signal was subtracted from the signal from the other time 

delays to obtain the difference scattering signals, S(q, t). 
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III. Supplementary Figures 

 

FIG. S1. Schematic diagram illustrating LCF using the direct method. In this figure, the experimental signal and its components 

are displayed as two-dimensional matrices instead of column vectors for better visibility. (a) Time-resolved experimental data, 

A(t1), measured at a certain time delay, t1, can be expressed as a weighted sum of signal components, Cis, having different 

physical origins and a residual, X(t1). Here, the signal consists of n different components. The time-dependent weights of the 

components are denoted as αi(t1). (b) The first step is the Gram-Schmidt (GS) process of the components, Cis. The signal 

components, each of which has its own physical origin, Ci, are not necessarily orthogonal. Therefore, as the first step, the GS 

process is applied to the Cis to yield the orthonormalized components, Ois. The process proceeds step by step from C1 to 

Cn. As an example, when orthonormalizing Ci, the vector components of other orthonormalized vectors from O1 to Oi–1 in 

Ci are removed to generate Oi. The resulting Oi is orthogonal to other vectors from O1 to Oi–1. (c) In the second step, 

using the orthogonalized components obtained from (b), the weight of the Cn component, αn(t1), can be directly calculated. 

Here, the notation <A, B> denotes the inner product of the two vectors A and B. As also explained in Equation S8, the weight 

can be obtained by calculating < A(t1), On >/< On, Cn >. (d) In the third step, using the weight αn(t1) calculated from (c), 

the contribution of Cn can be removed from A(t1) by subtracting αn(t1) · Cn. The resulting remnant experimental data, 

A
′
(t1), now consists of n–1 different components. In the fourth step, the procedures (c) and (d) are repeated until α1(t1) is 

obtained. Thus, the weights from αn(t1) to α1(t1) can be retrieved. 

  



S19 

 

 

FIG. S2. The effect of errors in the prior knowledge and the reconstruction of the correct (∂S(q)/ ∂T)ρ curve even when an 

erroneous (∂S(q)/ ∂T)ρ curve is used as the input for SANOD. (a) Various erroneous (∂S(q)/ ∂T)ρ curves were generated by 

distorting the correct (∂S(q)/ ∂T)ρ along the q-axis. The values in the legend indicate the q-shift applied to generate the distorted 

curves. (b) Experimental data, which is the same as Figure 4a. (c) The α3(t) traces obtained by SANOS using various (∂S(q)/ 

∂T)ρ curves as the prior knowledge for the analysis of the data shown in Figure 4a in the main text. (d) The contributions (left 

y-axis) of the prior knowledge component and the deviations (right y-axis) of the α3(t) traces from that obtained from the 

correct (∂S(q)/ ∂T)ρ or U1(q) are plotted as the function of the q-shift. (e) The residual obtained when an erroneous (∂S(q)/ 

∂T)ρ curve with the q-shift of 0.95 is used. Unlike the case where U1(q) or the correct (∂S(q)/ ∂T)ρ curve is used, the residual 

is not negligible any more. (f) The components used for SANOD. The black curve is the correct (∂S(q)/ ∂T)ρ and the red curve 

is an erroneous one with the q-shift of 0.95. C1 and C2 are the major components from the SVD of the data at negative time 

delays. C1, C2 and the erroneous (∂S(q)/ ∂T)ρ were used as the input for SANOD. The blue curve is the major component 

that has the α3(t) trace, extracted from the residual in (e). (g) Comparison of the correct (∂S(q)/ ∂T)ρ curve (black) and the 

reconstructed (∂S(q)/ ∂T)ρ curve (red) obtained by using the residual from the SANOD using the erroneous (∂S(q)/ ∂T)ρ curve. 

We note that the correct (∂S(q)/ ∂T)ρ can be still obtained by using either U1(q) (as described in the section C of the 

supplementary material) or even the inaccurate, erroneous prior knowledge on the shape of the signal component (as described 

in the section D of the supplementary material). 
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