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l. Supplementary Discussions
A. Theory of LCF using the direct method

Let us treat a spectrum in experimental time-resolved data as a column vector. This
treatment is acceptable because even when the experimental data are obtained in the form of a
multidimensional matrix, they can be easily transformed into a column vector using
vectorization. For example, in the case of TRXL, the difference scattering curve at a specific
time delay, AS(q, ?), is expressed as follows:

AS(q, 1) = [AS(q,, ), AS(q,, 1), +.. , AS(q,» 0,)" (S1)
where T denotes the transpose of a row vector to a column vector. Further, the series of time-
resolved data can be approximated as the sum of their time-independent spectral components
as follows:

AS(q, t1) = ASqum(q, t1) + X(q, 1)
= 01(t1) - Ci(g) + ax(ty) - Co(q) + - + 0, (t1) - Co(g) + X(g, 1)
AS(q, t;) = ASqm(q, t;) + X(q, t2)
= a1(%2) - Ci(q) + ax(22) - Co(g) + -+ + 0, (23) - Colg) + X(q, 12) (82)

AS(q, tn) = ASqun(q, 1) + X(q, 1)
= o1(fn) - C1(q) + oa(t) - Ca(q) + - + o, (1) - Co(q) + X(g, 1)

where Ci(¢q) are the spectral components of the signal, a,(#) are their weights at time delay
i, ASgqm(q,t) is the approximated signal as the sum of the time-independent spectral
components, and X(q, ¢;) is a residual signal in AS(q, ;) for the approximation. When the
spectral components, {C;(q)};, are orthogonal as in the case of singular spectral modes in SVD

analysis, the weight of a spectral component, C;(g), can be easily calculated using vector

projection as follows:

) = < AS(q, 1), Ci(g) > ($3)

< Ci(9), Ci(q) >
where < A,B > denotes the inner product between two vectors, 4 and B. As shown in
Equations (S1)—(S3), direct arithmetical vector projection gives the weight of a component.
However, if {Ci(q)}; are not orthogonal, such a simple vector projection does not yield their
exact weights in the data.

The non-orthogonal decomposition of SANOD is based on LCF of experimental data
S2



as the sum of the signal components. SANOD uses non-orthogonal signal components as the
initial input and obtain their weights. For the latter step, SANOD utilizes the direct method
which refers to linear algebraic methods to yield the solution of linear equations without
numerical iterative minimization. Among the direct methods, we decided to use QR
decomposition to decompose the experimentally observed signal into a sum of the non-
orthogonal components, {C;(¢)};.

The entire procedure of SANOD consists of four steps, and it can be briefly described
as follows (see Figure S1). The first step is QR decomposition, which is a well-established
mathematical procedure for decomposing a matrix into a product of two matrices Q and R,
where Q is an orthogonal matrix and R is an upper triangular matrix. A matrix is prepared by
horizontally concatenating a set of non-orthogonal components, {C;(¢)};- Then, the matrix is
decomposed to yield the O and R matrices. There are several numerical methods for QR
decomposition, such as the Gram-Schmidt (GS) process'?, Householder reflections®!?, and

Givens rotations!®!!

, each of which has its own advantages and disadvantages. In this study,
the GS process, which is a textbook example of a method for orthonormalization of a set of
vectors, is implemented for the QR decomposition, because it is easy to visualize and express
using mathematical formula. The GS orthonormalization of a set of non-orthogonal signal
components, {C;(q)};, yields a set of orthonormalized signal components, {O;(q)}; (see

Figure S1b). The process can be formulated as follows:

O, = norm (i> = &
icl) "B,
0, = norm(C, — proj(C,, Oy))
(G =, 0D
- ﬂz,z
05 = norm(C; — proj(Cs, O) — proj(Cs, 0,)) (54)
(G =By 0= f,, - 0)
- ﬂ3,3

On = norm(Cn —pVOj(Cn, 01) —pVOj(Cn, 02) -
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_pVOj(Cn, 0,.1))
_ (G _ﬂl,n -0, _ﬁ2,n "0y == n-ln O,..1)
ﬁn,n

while [)’ij are constants, norm(A) denotes the normalized vector of A, which can be

expressed as 4 /v< A, A >, |A| denotes the magnitude of vector 4, and proj(4, B) stands
for the projection of vector 4 to vector B, which can be expressed as
<4,B> (S35)
<B,B>

Note that ﬂi’j = < Ci(g), O(q) >. It is obvious that the resulting {O;(¢q)}; are orthogonal.
Horizontal concatenation of {O;(q)}; yields the matrix O, and the matrix with the element S, ;

in its ith row and jth column is the matrix R.

The second step is to calculate the weight of a signal component, C,(q), by using the
orthogonalized components (see Figure S1c). From Equation (S4), {C;(¢)}; can be expressed
in terms of {O0;(q)}; as

Cl zﬂl,l ) Ol
CZ zﬂl,z ) Ol +ﬂ2’2 ) 02
C3 =ﬂ1,3 ’ Ol +ﬂ2’3 ) 02 +ﬁ3’3 ) 03 (86)

Co=p, O tph, Ort-+p -0,
Substituting Equation (S6) into Equation (S2) yields
AS(q, ) = ASqum(g. 1) + X(q, 1))
= a;(4) * Ci(g) + ax(t) * Cog) + -+ + 0,,(5) * C,(q) + X(g, 1)
=f, 0 0@+ w@) B, 0@+, @)+ (s7)
+0,0) B, O@+h,, 0D+ +B, - 0019
+8,, - 0ua) +X(g. 1)
In Equation (S7), the only constant in the term of O,(q) is ﬁn,n * ,(¢)). Therefore, by
taking the inner product with O,(q) on both sides of Equation (S7), a,(f) can be

arithmetically calculated as

(S8)
< AS(Qa l‘,-), On(Q) > = ﬂm . an(ti) - < On(Q)a On(q) >
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=5, " o1
< AS(q. 1), O,(q) >
ﬁ}’l,l’l

The first step, QR decomposition, is essential for the second step because the weights of the

an(tj) =

non-orthogonalized signal components, o,(Z), can be simply calculated on the basis of the
orthogonal properties of {O;(¢)};.

The third step is to remove the contribution of the C,(g) component from the signal
(see Figure S1d). By using the weight o,(#) calculated in the second step, the known
contribution of the component C,(¢) can be subtracted from the signal as follows:

AS(q, 1) — a,(4) - Cu(q)
=01(f) - Ci(q) +ox(ty) - Colg) + -+ 0,1 () - Coi(q) + X(g, 1))
=a()) By, Ol@)+0() (B, O+ By, - Ox@) +
+ o) By O+ B, Oui(@) +X(g. 1)

The fourth step is to simply repeat the second and third steps until the weights of all
the components are calculated. As the contribution of the nth component, C,(q), is subtracted
from the signal, the remaining signal, AS(q, ¢;) — a,(#;) - C,(q), consists of n—1 components
from C;(q) to C,;(gq). By applying the second step to the remaining signal, the weight,

a,,.1(%;), of a signal component, C,_;(g), can be calculated as follows.
< AS(g, ) — a, (1) - Cu(q), Oni(q) >
=Bip1 1 (B) - < 04(q), Opa(g) >
=Byt On1(8) (510)

< AS(g, ;) = 0,(1) - Cy(q), Op1(q) >
ﬂn—l,n—l

Repeating the third step to remove the contribution of the (#n—1)th component yields

0y (tj) =

the remaining signal, which consists of »—2 components. By repeating these processes until the
last weight, a,(¢), is obtained, the set of the weights, {o;(#)};, for all the components at a
certain time delay, ¢, is completed. Again, by repeating the procedure for the entire time series
of the experimental data, the time-dependent profile of the contribution of each component,
{{0,(2,)};};» is obtained. These profiles, which are called chronograms, show when and which

processes occur as the reaction progresses. As shown by Equations (S1), (S2), and (S4)—(S10),
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the entire procedure to retrieve {{a;(#)};}; is a fully arithmetic procedure, i.e., no iterative
fitting is required. Accordingly, the procedure is not only simple and fast but also yields a
unique optimal solution.

Note that the chronogram {{a;(#)};}; obtained from SANOD is the solution that
minimizes the norm of each X(q,#) in Equation (S2). In other words, the method finds
{{0(z)};}; that minimizes the magnitude of the residual signals; thus, the solution obtained
from SANOD is the same as that obtained from least-squares fitting.! Moreover, it is possible
to modify the SANOD procedure to obtain {{o,(#,)};}; that minimizes the weighted least
square, such as the chi-square, which exploits the experimental standard deviations. The
modification and related discussion are presented in the following section. In the
demonstrations presented in the main text, we use the modified SANOD, which minimizes the

chi-square of the residual signal.

B. Relationship between SANOD, least-squares minimization, and chi-squared
minimization
Part 1. Relationship between SANOD and least-squares minimization
As mentioned in the main text, {a,(#)};, the weights of the components at a certain
time delay, #;, obtained using SANOD are identical to the solution of least-squares fitting of
the following equation:
AS(q, ;) = ASqm(q, 1) +X(g, 1)
= o) Ci(q) + () - Co(q) + -+ + (1) - Clq) + X(q, 1))

This can be proved as follows. The orthonormalized components of {C;(¢)}; are denoted as

(S11)

{0:(¢)};- Then, as shown in Equation (S7) in the main text, Equation (S11) can be expressed in
terms of {O;(q)}; as follows:

AS(q, ) = ASqum(g, 1)) + X(q, 1)
= a;(4) - Ci(q) + aa(f) - Ca(g) + -+ + o, () - Culq) + X(g, 1)
=P, o) 01(g) + () (B, O1(9) +,, - 0x(q)) + - (S12)
+ @) (B, 0@+ + B, 0u@) + X(g, )
The residual X{(qg,#;) can also be expressed as a sum of {O;(¢)}; components and the residual

component, Zgq, ¢;),which is orthogonal to all the O;(¢)s as follows.
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X(g, 1) = y,(5) - O1(q) +7,(t) - Ox(q) + -+ 7,(t) - O,(q) + 4q, 1) (S13)
Substitution of Equation (S13) into Equation (S12) yields the following equation:
AS(q. 1) = 01() (B, | * Ca(t) + =+ B, 4(t) + 7, () + -+

(S14)
+ O0u(q@) - (B, (1) +7,(4)) + Aq, 1)
As mentioned in Equation (S8), a,(Z) is obtained as follows:
< AS(q, ), 0,(q) >
_ (¢, %), 0u(q) (515)

o, (%) B
Substitution of Equation (S14) into Equation (S15) yields the following equation because
O,(q) is orthogonal to the other O,(¢)s and Ag, ¢):
< AS(g, ), 0,(q) >

O(n(tj) = ﬁ
_ B a6 +7,() (S16)
ﬁn,n
= a,(t) + %

Equation (S16) indicates that y (#) must be zero. Thus, it can be shown that y.(#)s are zero
for all i. Considering Equation (S13), this means that X(q,?) is Zgq,t) and thereby
orthogonal to all the O;(¢)s. In summary, SANOD yields the residual component, X(q, ¢),
which is orthogonal to all the O;(g)s.

Now, let us consider what is X(q, ¢;) obtained from least-squares fitting. According to
its definition, least-squares fitting finds {a;(#,)}; that minimizes the square of the norm of
X(q, t;). Again, using Equation (S13), X(q,#) can be expressed as the sum of {O(q)};
components and the residual. Following Equation (S13), the square of the norm of X{(g, ;) can

be expressed as follows:
2 2
|X(q. )" = 7, 2@) + 7,2@) + - +7,2() + | Zq. 1) (S17)

According to Equation (S17), |X(q, tj)|2 is minimized when y(#)s are zero for all 7. This
means that the least-squares fitting yields {a;(#)}; that makes y.(#)s zero for all i, i.e., X(q,
t;) equalto Zgq,t;) and consequently orthogonal to all the O;(g)s. Previously, we showed that
SANOD also yields the residual X(g, #;), which is orthogonal to the O,(¢)s. Thus, so far we
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have proven that both SANOD and least-squares fitting yield X(q, ¢;), which is orthogonal to

the O,(g)s. Such a residual component is uniquely defined as follows:
X(g,1) = S(3,) - ) proj(AS(g, 1), 0y) (S18)
i

The uniqueness of X(g,#;) ensures that the residual from SANOD is identical to the residual
from the least-squares fitting. As the residuals are the same for SANOD and the least-squares
fitting, ASgm(¢,%)s also should be the same for the two methods. When ASg,..(q, ) is
determined, «;(#) s are uniquely derived from ASg.(g,%) if {C(q)}; are linearly
independent. Suppose that {C;(q)}; are linearly independent and there are two different
solutions of a,(%)s, «;'(¢)s and «;"(¢)s, yielding the same ASg,, (g, #;). Then, the following

equations hold.

MSun(@5) = ) 6'@)- Cg) (s19)

l

ASun(@.0) = ) " (1) C(g) (520)

l

As o;'(t)s and o;"'(¢)s are different, there exists an index d that satisfies a,'(¢) # a;"(¢).

Substitution of Equation (S20) into Equation (S19) yields the following equations:

D @) =) a"t)- @) (s21)
D @0 - (1) - Clg)} =0 (522)
D @) - @) - C@)} =(,"0) - 0,0)) - Chg) (523)

izd
Equation (S23) contradicts the assumption that {C;(¢)}; are linearly independent. The
contradiction means that once ASg,(q,%) is determined and {Ci(¢q)}; are linearly
independent, then {a,(#)}; must be uniquely determined. As ASg,(q, ) from SANOD is
identical to ASg,, (g, ;) from the least-squares fitting, finally, it can be concluded that {a;(#)};
obtained using SANOD is identical to that obtained using the least-squares fitting when
{Ci(¢)}; are linearly independent.
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Part 2. Modification of SANOD to yield the solution of chi-squared minimization

When analyzing experimental data, chi-square fitting, which implements the
information of standard deviations associated with each data point, is normally preferred over
least-squares fitting. Accordingly, it would be highly desirable if SANOD can be modified to
obtain the same solution as that of chi-square fitting.

The modification is as follows. The key idea of the modification is to scale the signal
components and the experimental data using the standard deviations, and to apply SANOD to
the scaled data using the scaled components. This can be done by orthonormalization of the
scaled components, {Ci(¢q)/o(q, t)};, to yield {O i(q, t,)};. Then, according to Equation (S17),
the scaled experimental data can be expressed in terms of {O(q, ¢,)}; as follows:

AS(q, %) _ ASam(q. %)  X(g. )
O'(C], t]) O'(C], t') O'(C], t])

)y 5 ) ) a@ﬁ fg 23)
=a'1(4) B11-0%(q, 1)+ a5 () - (B1,°071(q, 1) (S24)
+ f22:03(g, 1)+ + () (B, 01(q, 1) + -
X'(q, 1)

+ By 0., 1))+
ﬂ y (q ])) O_(q’t])

For Equation (S18), a;s, ﬂiJs, and Oy(q, t;)s in Equation (S7) are substituted by a's, ,B'Z.J.s,
and O (q, t;)s to emphasize that the constants and the orthonormalized components obtained
from SANOD are different from those obtained from the modified SANOD. Clearly, the
resulting equation in terms of {O(q, #)}; is identical to Equation (S12), except that the
residual term X(g, ;) is substituted by a scaled residual, X'(q, #)/0(q, t;). Therefore, by
recalling the discussion in Part 1, it can be deduced that SANOD on the scaled experimental
data using scaled signal components will yield {a';(¢,)}; that minimizes the square of the norm
of X'(q, t;)/0(q, t;). Because the square of the norm of X'(q, £,)/a(q, t,), |X"(q, t;)/0(q, tj)lz, is
identical to the chi-square by its definition, the modified SANOD minimizes the chi-square.
Accordingly, the modified SANOD yields the same result as the chi-square fitting. Note that
the orthonormalized scaled signal components, {O (g, t,)};, are dependent on the time delay

unlike the case of normal SANOD. Clearly, the standard deviation, o(qg, ), is dependent on
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the time delay. Consequently, the scaled signal components, {Ci(q)/a(q,)};, and their

orthonormalized ones, {O(q, t,)};, become dependent on the time delay.
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C. Discussion regarding the example of the application of SANOD in the section
C-1 of the main text:
The method to retrieve the correct shape of the third component

Normally, the LSVs obtained from SVD do not directly represent physically
meaningful spectral component. Instead, a physically meaningful spectral component, e.g. a
species-associated spectrum, is represented as a linear combination of the LSVs. As SANOD
also uses the LSVs as the spectral components for LCF, to retrieve the correct shape of the
physically meaningful spectrum and their kinetics, it is required to perform posterior analysis
after SANOD. The detailed procedure is as follows.

The first, and the most important step is to build a correct kinetic model basing on the
prior knowledges. In the example in the section C-1, among the three components used for
SANOD, the first two components are for the systematic noise of the experiment and are
prepared by using prior knowledge on the data. Basing on the prior knowledge, it can be
reasonably modeled without any difficulty that the final chronograms of the two components
from the posterior analysis should not show any time-dependent trend but noise. In other words,

the kinetic model for the two components can be constrained as follows.
o '(4) =0z'(4) =0 (S25)
Primes are attached to the notations of the chronograms in order to distinguish the

chronograms for the kinetic model from those obtained from SANOD. The kinetic model for
a'3(Z;) 1s constrained to follow that from SANOD as follows.

a3'(t) = az(?) (526)
Let the correct shape of the third component, C;, is C;'. As ;' should be
represented as a linear combination of C;, C,, and Cj, it can be represented as follows,
C3'(@=6-C1(g) +& Ca(q) +C-C3(9 (S27)
where 0, € and ( are the weights for the linear combination. Substituting Equations
(S25)-(S27) to Equation (S11) yields
AS(q, 1) = ASqum(q, 4) + X(g, 1)
= oy (t) * Ci(q) + ax(fy) - Ca(q) + a3(2) - C3(q) + X(q, 1) (528)
=a;'(5) C'(@) + ' (1) - G(q) + a3'(5) - C5'(q) + X(q, 1))
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= a3(t) - (8- C1(g) +&- Co(q) + - C3(q)) + X(g, 1)
Comparison of the second and the fourth rows in Equation (S28) yields,
a () - Ci(g) + ax(t) - Colg) + as(f) - C3(9)

= a3(5) " (8- C1(g) +&- Cao(g) + - C3(9)
Equation (S29) can be solved by finding the set of 5, € and ( that fits the following

(S29)

equation.
(0 az(t) - a; (%) - C1(q) + (- az(f)) - (%)) - C2(9g)
+ (€ az(?) - a3(7)) - C3(@) =0

Since Equation (S30) is linear, the solution of o, € and { can be solved by using the

(S30)

direct method.

S12



Proof that regardless of whether Ui(q) or (0S(q)/0T), is used as the third component
in SANOD, the resulting o;(t) is the same
First, let us consider the case when C; is (0S(q)/0T),. Because (0S(g)/0T), of water

is a linear combination of C,, C,, and Uj, it can be expressed as follows:

(59

oT )

where u, 6, and 5 are the weights for the linear combination. Recalling Equation (S4), when

C; is (0S(q)/0T),, orthonormalization of the three components yields {O;}; as follows.

0= S
2%
0, G P 0
Paz (S32)
0, Qb 0=y 0
P
WGt 0-Cot U= f 301 = ,5- 01)
- P
Since ﬂz;/ =<C;,0; >, ﬂ1,3 and ﬂzﬁ are expressed as follows:
P 3=<C 0> =<puC+0-C+n-U,0, >
=pu- <C,0,>+ 60- <Cp,0,>+ - <Up, 0, > (S33)

:’u.ﬂl,ll <01,02>+ 0 - <C2,02>+ n- <U1,02>

Substitution of Equation (S33) and Equation (S6) into Equation (S32) yields the following

equation:
w-C+0-Co+n-U —p,,-0,—p,,-0,)
O- = 13 2,3
) =
ﬁ3,3
1
:ﬂ_.((’u.ﬂl,l.01+9.(ﬂ1,2.01+ﬂ2,2-02)+n.U1
33

(S34)
- (ﬂ'ﬂl’l‘*e'ﬂl,z""?' <U,0,>) 0

- (9'ﬂ2’2+7/' < U1502>)'02)
(U= <U,,0,> -0,— <U,,0,> -0y) 1
Bss

For comparison, let us consider the other case when C; is Ui, not (0S(q)/0T),. Let the
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orthonormalization of C,, C,, and U; yield {O;'};. In this case, the orthonormalized

components can be expressed as follows:
G

01’= 7= 0
ﬁl,l
C —ﬁ ,'O,
0, = - = 1 =0,
ﬁ2,2
o = Ur=p5 O = b5 " O (S35)
3 7
ﬂ3,3
_U]— <U1,0]> '0] - <U1,02> '02
ﬁ3,3
Os-p
= > 3',3 =03'CO
n Py,

where o is a constant. Equation (S35) shows that the two vectors O; - @ and O;  have the
same direction and the same magnitude. Because O; and O3’ are both unit vectors, it can be
deduced that @ =1 and Oj; is identical to O5'. This proves that as (8S(q)/0T), of water is a
linear combination of C;, C,, and Ui(g), the GS process of C; yields the same O;
regardless of whether C; is Ui(g) or (0S(q)/0T), of water. Therefore, according to Equation
(S8), as(¢) for Ui(g) and o5(¢) for (0S(q)/0T), of water are identical.
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D. The method to retrieve the correct shape of the signal component from
erroneous prior knowledge

When applying prior knowledge on the shape of the signal components to analyze
experimental data, there is always a possibility that the prior knowledge contains some errors.
Normally, such errors in the shape of the signal components can significantly affect the result
of kinetic analysis. For example, the contribution of a signal component can be miscalculated
if there are errors in the shape of the signal component. This is also true for the case of SANOD.
To demonstrate how the result of SANOD is affected, the experimental data shown in Figure
4a was analyzed using SANOD with an erroneous (0S(q)/ 0T), component. Three components,
the two signal components corresponding to the systematic artifacts of the experiment (C; and
C,) and an erroneous (0S(q)/ 0T), component, were used for SANOD. The erroneous (6S(q)/
0T), component was prepared by shifting the g-axis, i.e., by multiplying a constant factor (g-
shift) on the g values, of the known correct shape of the signal. A range of factors from 0.99 to
0.94 were tested. Figure S2a shows the generated curves in comparison with the original,
correct (0S(q)/ 0T), curve. Figure S2¢c shows o5(f) traces for various g-shift factors. As the
amount of the error increases, as(#) deviates more from o;(#) obtained from the correct
(0S(g)/ T), or Ui(g), and accordingly the residual increases as shown in Figure S2d. Also it
can be shown that the contribution of the erroneous signal component decreases as the more
error is introduced to the shape of the component. Figure S2e shows the residual when the
erroneous (0S(q)/ dT), curve with the g-shift of 0.95 is used. The residual is not negligible
anymore. From the residual, X(qg, f), we can extract the component, R(g), that has the o5(¢)

trace by using the following equation.

R(@) = ) (K@ 1) 5()/ ) (e57() (836)

l

The uppermost curve in Figure S2fis R(gq).

Then by using the posterior analysis described in the Section C of the supplementary
material, which is the method to retrieve the correct shape of the third component, the wrong
weights of the artifacts are corrected to yield the artifact-corrected signal component, that is
C3'(g) in Equation (S27). After that, by adding R(q) to C3'(g), the final reconstructed signal
component is retrieved. As shown in Figure S2g, the reconstructed (0S(q)/ 0T), curve is

essentially identical to the correct (0S(q)/ 0T), curve, indicating that the correct (0S(q)/ oT),
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can be still obtained by using even the inaccurate, erroneous prior knowledge on the shape of
the signal component. Nevertheless it is more convenient to use Ui(q) instead of the known

(0S(g)/ 0T), to retrieve the correct (0S(q)/ OT), because a smaller number of steps are involved.
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Il. Supplementary Methods

A. TRXL data of CHI; in cyclohexane

The TRXL data on CHI3 in cyclohexane were collected at the IDO9B beamline in the European
Synchrotron Radiation Facility (ESRF). Details on the experimental scheme and data are
described in the previous publication, which reported the structural dynamics based on global

analysis.!?

B. TRXL data of Au(CN)," trimers in water

The TRXL data on Au(CN);" trimers in water were collected at the NW14A beamline in the
High Energy Accelerator Research Organization (KEK). Details on the experimental scheme
and data are described in the previous publication, which reported the structural dynamics of

this molecular system.'*!*

C. TRXL experiment of a dye molecule in water

The TRXL experiment was performed at the BL3 beamline of SPring-8 Angstrom Compact
Free-Electron Laser (SACLA). A typical setup for TRXL was used in the experiment. A
femtosecond laser pulse from a Ti:sapphire laser was frequency-doubled to 400 nm and used
to initiate the reaction. The laser pulse was focused to a spot of 300 x 200 um? to give 3 mJ/mm?
fluence on the sample. Subsequently, a femtosecond X-ray pulse generated at SACLA was used
to probe the progress of the reaction. The X-ray pulse had a center energy of 14.76 keV and
was focused to a spot of 20 x 20 um? on the sample. The two-dimensional scattering pattern of
the X-ray pulse was collected on an area detector (Rayonix LX255-HS) with a sample-to-
detector distance of 24.3 mm. For the sample, an aqueous solution of a dye molecule, 4-amino-
1,1'-azobenzene-3,4"-disulfonic acid monosodium salt, and sodium hydroxide, with
concentrations of 2 mM and 4 mM, respectively, was used. The sample solution was circulated
through a sapphire slit nozzle (0.3 mm slit, Kyburz) to form a flat liquid jet. The scattering
signal from the solution was measured at the following time delays: from -5 psto 15 psin 1 ps
steps, 17 ps, 20 ps, 25 ps, 30 ps, 35 ps, 40 ps, 50 ps, 60 ps, 80 ps, and 100 ps. In addition, the
signal at a negative time delay, -20 ps, was measured as a reference signal for unexcited
ground-state samples. The reference signal was subtracted from the signal from the other time

delays to obtain the difference scattering signals, AS(q, ?).
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lll. Supplementary Figures

(a) W

normalization

O.
removal of ‘3
Q.

n-2

Al

components | k.

—> o
onents | & ¥

L |

FIG. S1. Schematic diagram illustrating LCF using the direct method. In this figure, the experimental signal and its components
are displayed as two-dimensional matrices instead of column vectors for better visibility. (a) Time-resolved experimental data,
A(t)), measured at a certain time delay, ¢, can be expressed as a weighted sum of signal components, C;s, having different
physical origins and a residual, X(¢,). Here, the signal consists of n different components. The time-dependent weights of the
components are denoted as a;(¢)). (b) The first step is the Gram-Schmidt (GS) process of the components, C;s. The signal
components, each of which has its own physical origin, C;, are not necessarily orthogonal. Therefore, as the first step, the GS
process is applied to the C;s to yield the orthonormalized components, O;s. The process proceeds step by step from C; to
C,. As an example, when orthonormalizing C;, the vector components of other orthonormalized vectors from O, to O,_; in
C; are removed to generate O;. The resulting O; is orthogonal to other vectors from O; to O,_;. (c) In the second step,
using the orthogonalized components obtained from (b), the weight of the C, component, «,(¢,), can be directly calculated.
Here, the notation <A, B> denotes the inner product of the two vectors A and B. As also explained in Equation S8, the weight
can be obtained by calculating < 4(t,), 0, >/< O,, C, >. (d) In the third step, using the weight a,(z,) calculated from (c),
the contribution of C, can be removed from A(¢#;) by subtracting a,(z,) - C,. The resulting remnant experimental data,
A'(,), now consists of n-1 different components. In the fourth step, the procedures (c) and (d) are repeated until a,(z,) is
obtained. Thus, the weights from «o,,(#;) to o;(¢;) can be retrieved.
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FIG. S2. The effect of errors in the prior knowledge and the reconstruction of the correct (9S(q)/ 0T), curve even when an
erroneous (0S(q)/ 0T), curve is used as the input for SANOD. (a) Various erroneous (3S(q)/ T), curves were generated by
distorting the correct (S(q)/ 0T), along the g-axis. The values in the legend indicate the g-shift applied to generate the distorted
curves. (b) Experimental data, which is the same as Figure 4a. (c) The o3(#) traces obtained by SANOS using various (6S(q)/
OT), curves as the prior knowledge for the analysis of the data shown in Figure 4a in the main text. (d) The contributions (left
y-axis) of the prior knowledge component and the deviations (right y-axis) of the a;(f) traces from that obtained from the
correct (0S(q)/ 0T), or Ux(q) are plotted as the function of the g-shift. () The residual obtained when an erroneous (6S(q)/
0T), curve with the g-shift of 0.95 is used. Unlike the case where Ui(q) or the correct (0S(q)/ dT), curve is used, the residual
is not negligible any more. (f) The components used for SANOD. The black curve is the correct (0S(q)/ 6T), and the red curve
is an erroneous one with the g-shift of 0.95. C; and C, are the major components from the SVD of the data at negative time
delays. C;, C, and the erroneous (0S(q)/ 0T), were used as the input for SANOD. The blue curve is the major component
that has the as(7) trace, extracted from the residual in (e). (g) Comparison of the correct (3S(q)/ 0T), curve (black) and the
reconstructed (0S(q)/ 0T), curve (red) obtained by using the residual from the SANOD using the erroneous (3S(q)/ 0T), curve.
We note that the correct (6S(q)/ 0T), can be still obtained by using either Ui(q) (as described in the section C of the
supplementary material) or even the inaccurate, erroneous prior knowledge on the shape of the signal component (as described
in the section D of the supplementary material).
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