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Abstract
The orientational dynamics of a gold trimer complex in a solution are investigated by using
anisotropic femtosecond x-ray solution scattering measured by an x-ray free-electron laser. A
linearly polarized laser pulse preferentially excites molecules with transition dipoles oriented
parallel to the laser polarization, leading to the transient alignment of excited molecules. Such
photoselectively aligned molecules give rise to an anisotropic scattering pattern that has different
profiles in parallel and perpendicular directions with respect to laser polarization. Anisotropic
x-ray scattering patterns obtained from the transiently aligned molecules contain information on
the molecular orientation. By monitoring the time evolution of the anisotropic scattering pattern,
we probe the rotational dephasing dynamics of [Au(CN)2

−]3 in a solution. We found that
rotational dephasing of [Au(CN)2

−]3 occurs with a time constant of 13±4 ps. By contrast,
time-resolved scattering data on FeCl3 in a water solution, which does not accompany any
structural change and gives only the contributions of solvent heating, lacks any anisotropy in the
scattering signal.

Keywords: anisotropic x-ray solution scattering, rotational dephasing, XFEL

(Some figures may appear in colour only in the online journal)

1. Introduction

Time-resolved x-ray solution scattering (TRXSS)—also
known as time-resolved x-ray liquidography (TRXL)—is a
useful tool for investigating molecular structural dynamics
with a high spatiotemporal resolution. TRXSS makes use of a

pump-probe scheme that employs a pump laser pulse for
initiating a chemical reaction and a probe x-ray pulse for
probing the photo-induced structural changes of reacting
molecules. TRXSS has been applied to the photoreactions of
various molecular systems in a solution, ranging from small
molecules [1–14] to proteins [15–26], and has elucidated their
detailed structural dynamics. In principle, an x-ray solution
scattering pattern contains direct information on three-
dimensional molecular structures, but the information on
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molecular orientation is averaged out due to the random
orientation of molecules in a solution. For this reason, pre-
vious TRXSS studies have mainly focused on the dynamics
of intramolecular structural rearrangement rather than the
orientational dynamics of molecules. Recently, it was sug-
gested that anisotropic scattering patterns obtained by using
linearly polarized laser light could be used to probe molecular
orientation. For example, anisotropic patterns measured for
myoglobin in a solution were analyzed to extract the
dynamics of molecular orientation of the protein at the
picosecond time scale [19]. In that work, linearly polarized
laser pulses were used to create the excited protein molecules
that are transiently aligned along the laser polarization
direction. The photoselectively aligned molecules yielded
anisotropic x-ray scattering patterns that have different scat-
tering profiles in the vertical and horizontal regions of a
scattering image. The discrepancy between the scattering
profiles in the vertical and horizontal regions was monitored
as a function of time, revealing the rotational dephasing time
of the excited protein molecules in a solution.

This approach is similar to pump-probe transient aniso-
tropy measured by time-resolved spectroscopy. Transient
anisotropy can provide the orientational dynamics of mole-
cules in isotropic media [27–29] and has been applied to the
investigation of the rotational dephasing of molecules [30, 31]
and energy transfer dynamics in multichromophore systems
[32–36]. In the pump-probe transient anisotropy experiment,
a linearly polarized pump laser pulse induces a transient
anisotropic orientational distribution of excited molecules
with their transition dipoles to be preferentially aligned along
a laser polarization direction. Then, the evolution of a tran-
sient dipole direction is monitored by another linearly polar-
ized probe pulse.

Even though previous anisotropic picosecond x-ray
solution scattering performed on myoglobin has demonstrated
that TRXSS can be applied to the study of molecular orien-
tational dynamics, the technique could not be applied to small
molecules. This is because the time resolution of the TRXSS
experiment using a synchrotron is only ∼100 ps and is not
fast enough to observe their orientational dynamics. With the
advent of x-ray free-electron lasers (XFELs) that generate
sub-100 fs x-ray pulses, anisotropic x-ray solution scattering
can be extended to the orientational dynamics of small
molecules.

In this work, we present the first example in which the
orientational dynamics of a small molecule in the solution
phase have been revealed by TRXSS. We performed a
TRXSS experiment on a gold trimer complex, [Au(CN)2

–]3,
in an aqueous solution and monitored the transient anisotropy
using anisotropic scattering patterns to elucidate its orienta-
tional dynamics.

2. Experimental

The experimental setup of TRXSS and the geometry of the
laser and x-ray beams are schematically shown in figure 1(a).

A laser pulse initiates a photoreaction of sample molecules in
the solution phase. In particular, the linearly polarized laser
pulse induces the photoselective alignment of the excited
molecules. Subsequently, a femtosecond x-ray pulse gener-
ated by an XFEL is scattered from the sample molecules,
yielding an anisotropic scattering pattern. The x-ray pulse
incident with a time delay, Δt, with respect to the laser pulse,
monitors the time evolution of the anisotropy in the scattering
patterns as well as the progress of the reaction.

In our experiment, the x-ray beam propagated along the
z-axis and the sample was flown along the x-axis in a
laboratory-fixed reference frame. The laser beam was
overlapped with the x-ray beam at the focal point at a
crossing angle of 10°, resulting in a laser polarization
direction, ε, parallel to the ground and tilted by 10° with
respect to the y-axis as shown in figure 1(a). When a lin-
early polarized laser pulse interacts with an ensemble of
molecules, the excitation probability of a molecule with a
transition dipole, μ, is proportional to cos2α, where α is
the angle between the laser polarization (ε) and the tran-
sition dipole (μ). As a result, the orientational distribution
of the excited molecules is transiently anisotropic at the
moment of laser excitation.

In this work, we performed a femtosecond TRXSS
experiment on [Au(CN)2

−]3 in a solution at the BL3 beamline
of SACLA by using x-ray pulses with a sub-100 fs temporal
width. The center energy of the x-rays was 15 keV with a
narrow bandwidth (ΔE/E=0.6%). The x-ray beam was
focused on a spot 200 μm in diameter, yielding a fluence of
1.3 mJ mm−2. The laser pulses of 100 fs in duration at a
267 nm wavelength were generated by the third-harmonic
generation of femtosecond laser pulses at an 800 nm wave-
length from a Ti:sapphire regenerative amplifier. The 267 nm
laser pulses were focused on a spot 300 μm in diameter,
yielding a fluence of 2.1 mJ mm−2. The x-ray scattering pat-
terns were collected using an area detector (Rayonix, LX255-
HS) with a sample-to-detector distance of 31 mm. The [Au
(CN)2

–]3 solution of 300 mM concentration was used to
maximize the formation of the gold trimer complex against
the formation of monomeric and dimeric complexes. For
comparison, we measured the TRXSS signals of FeCl3 in
water (40 mM concentration), which gives only the con-
tributions of solvent heating. The sample solutions were cir-
culated using a sapphire nozzle with a 100 μm thick aperture.
The sample was made to flow with a flow speed higher than
3 m s−1 to supply fresh samples for every pair of laser and
x-ray pulses. To obtain time-resolved difference scattering
intensities, ‘laser-off’ images measured at a reference time
delay (that is, a –200 ps time delay) were subtracted from
‘laser-on’ images collected at time delays from –800 fs to
100 ps. Scattering intensities arising from 80 x-ray pulses
were accumulated for each scattering image to minimize the
x-ray intensity fluctuation caused by the SASE process. At
each time delay, about 50 images were collected to achieve a
high signal-to-noise ratio.
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3. Theoretical description of anisotropic x-ray
scattering pattern

Theoretical models for anisotropic scattering patterns arising
from an ensemble of unidirectionally oriented molecules have
previously been developed [19, 37–41]. Here, we briefly
present a theoretical description of anisotropic x-ray scatter-
ing patterns based on the derivation by Williamson et al [41].
Although this formalism was originally derived for electron
diffraction, it is still valid for x-ray scattering within the
independent atom model. The x-ray scattering intensity, S(q),
of molecules in a solution can be expressed as

S f q f q iq q rexp 1
n m

n m nm orientation
( )( ) ( ) ( ) ( )åå= - ⋅

where the indexes m and n refer to all atoms in the solution
sample, and q is the momentum transfer vector between the
incident (k0) and the scattered (k) x-ray waves with its
magnitude given by q 4 sin 2 2 ,( )p l q= ⋅/ / where 2θ is the
scattering angle and λ is the x-ray wavelength. rnm denotes
the position vector between the nth and mth atoms, and fn(q)
and fm(q) are the x-ray atomic form factors of the nth and mth
atoms, respectively. We consider only the elastic x-ray
scattering intensity because inelastic x-ray scattering does not
affect the difference x-ray scattering intensity. The symbol

orientationáñ represents the rotational average over all the

possible molecular orientations defined by the spherical-
coordinate variables (Ω and ψ), where Ω is the altitude angle
relative to the z-axis and ψ is the azimuthal angle relative to
the y-axis as shown in figure 1(b).

The scattering intensity in equation (1) is generally used
for isotropically oriented molecules but can be extended to
anisotropically oriented molecules by introducing an appro-
priate orientational distribution function, P(Ω, ψ), as follows:
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To evaluate S(q), we used a geometrical reference frame
shown in figure 1(b). In the reference frame, q and rnm can be
written as

qq cos cos , sin cos , sin 3( ) ( )j q j q q= - -

rr sin sin , sin cos , cos 4nm nm ( ) ( )y y= W W W

Figure 1 (a) Schematic of TRXSS experiment and the experimental geometry represented in a laboratory-fixed reference frame. Sample
molecules in a solution are excited by a linearly polarized laser pulse, resulting in the excited molecules transiently aligning along the laser
polarization direction. Subsequently, a femtosecond x-ray pulse incident with a time delay,Δt, probes the changes in molecular orientation as
well as the molecular structure with the progress of the photoinduced reaction. In our experiment, the x-ray beam propagated along the x-axis
and the sample was flown along the z-axis. The laser beam was overlapped with the x-ray beam at the focal point at a crossing angle of 10°,
resulting in a laser polarization direction, ε, parallel to the ground and tilted by 10° with respect to the y-axis. The transient aligned molecules
generate an anisotropic scattering pattern. To examine the anisotropy in the scattering image, we performed azimuthal integrations for vertical
and horizontal regions separately, yielding two distinct difference scattering curves, ΔSV(q, t) and ΔSH(q, t), respectively. (b) Geometry of
x-ray scattering experiment defined for the theoretical description of anisotropic x-ray scattering patterns. The position vector between the nth
and mth atoms (green arrow), rnm, is defined by the spherical-coordinate variables, Ω and ψ, where Ω is the altitude angle relative to the z-
axis and ψ is the azimuthal angle relative to the y-axis. The momentum transfer vector (purple arrow), q, represents the momentum transfer
between the incident (k0) and the scattered (k) x-ray waves, and its magnitude is dependent on the scattering angle, 2θ, and the azimuthal
angle, j, of the scattered x-ray beam. The direction of laser polarization (blue arrow), ε′, was considered to be parallel to the y-axis.
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where j represents the azimuthal angle (relative to the x-axis)
of the scattered x-ray beam as shown in figure 1(b). To
simplify the evaluation of equation (2), we will only consider
scattering from atomic pairs that have rnm parallel to the
direction of the transition dipole of each molecule.

For isotropically oriented molecules, the distribution
function is given by P(Ω, ψ)=1. By inserting equations (3)
and (4) into equation (2), we obtain the well-known Debye
equation as follows:

S f q f q j qr

f q f q
qr

qr

q

sin
5

n m
n m nm

n m
n m

nm

nm

0( ) ( ) ( ) ( )

( ) ( )
( )

( )

åå

åå

=

=

where j0 is the first spherical Bessel function and rnm denotes
the magnitude of rnm. It can be seen that the azimuthal angle,
j, is absent in equation (5), indicating that the scattering
pattern arising from isotropically orientated molecules is
isotropic (or centrosymmetric).

For anisotropically oriented molecules, here we consider
a simple case where the direction of laser polarization (ε′) is
parallel to the y-axis as shown in figure 1(b). In this case, the
distribution function is given by P(Ω, ψ)=sin2Ω cos2ψ.
Then, S(q) is expressed by
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where j1 and j2 are the second and third spherical Bessel
functions, respectively. Equation (6) clearly shows that the
x-ray scattering intensity depends on the azimuthal angle, j,
and therefore the scattering patterns arising from an

anisotropic orientational distribution of molecules should be
anisotropic. As a result, the degree of anisotropy of an x-ray
scattering pattern can serve as a measure of the orientational
distribution of target molecules. In addition, the temporal
change of the anisotropy in a series of time-resolved x-ray
scattering patterns directly reflects the dynamics of aniso-
tropic-to-isotropic orientational redistribution.

4. Structural dynamics of [Au(CN)2−]3 in a solution

A chemical reaction occurs by the formation and breaking of
chemical bonds and therefore a complete understanding of
chemical reactions essentially requires the monitoring of such
bond making and breaking processes. Ultrafast bond-breaking
processes have been intensively studied by using time-
resolved techniques. However, bond-making processes have
been studied much less frequently because they are diffusion-
limited bimolecular processes and are thus hard to initiate by
laser excitation. A gold trimer complex, [Au(CN)2

−]3, is a
good molecular system for investigating bond formation
because a non-covalent interaction among gold atoms (called
aurophilicity) allows the atoms constituting the complex to
reside in the same solvent cage. As a result, bond formation in
a gold trimer complex can be triggered by a laser pulse
without being limited by diffusion. We recently performed
TRXSS on a gold trimer complex and have revealed the
structural dynamics involving bond formation between gold
atoms, bent-to-linear structural relaxation, and tetramer for-
mation [1]. We have summarized the dynamics of the gold
trimer complex in figure 2(a). By the kinetic and structural
analysis of the TRXSS data measured for [Au(CN)2

−]3, we
identified four structurally distinct states: the ground state
(S0), an excited state (S1), a triplet state (T1), and a tetramer.

Figure 2. (a) Structural dynamics of [Au(CN)2
−]3 in an aqueous solution. In the ground S0 state, the gold atoms are bound in close proximity

by a non-covalent interaction called aurophilicity. Upon laser excitation, covalent bonds are formed between adjacent gold atoms with a bent-
to-linear structural change within ∼500 fs. The S1 state is converted into T1 with a time constant of 1.6 ps while accompanying further bond
shortening. Then, a tetramer is formed with a time constant of 3 ns and finally returns back to S0 with a time constant of 100 ns. (b)
Concentration changes of the four states of [Au(CN)2

−]3 as a function of time. As shown in figure 4, the time evolution of the anisotropy was
monitored in the time range from 5.2 ps to 105.2 ps (blue shaded area). Therefore, the orientational dynamics investigated in this work are
characteristic of the T1 state of [Au(CN)2

−]3.
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Upon laser excitation, an electron in S0 is excited from an
antibonding to a bonding orbital. As a result, covalent bonds
are formed between adjacent gold atoms in the S1 state. We
found that by the transition from S0 to S1, the average dis-
tance between adjacent gold atoms decreases from 3.6 Å to
2.8 Å by the formation of covalent bonds. Furthermore, the
structural change from bent to linear geometry occurs within
∼500 fs, which is the experimental time resolution. Subse-
quently, the S1 state is converted into T1 with a time constant
of 1.6 ps while accompanying further bond shortening. Then,
a tetramer is formed with a time constant of 3 ns and finally
returns back to S0 with a time constant of 100 ns.

In this work, rather than bond formation dynamics, we
focus on the orientational dynamics of the gold trimer com-
plex by analyzing the anisotropic patterns of the TRXSS data
in the time range from 5.2 ps to 100 ps, where no distinct
kinetic component is presentdue to structural transitions
according to our prior study [1]. In figure 2(b), the con-
centration changes of the four states are shown and the time
window used for studying the orientational dynamics is
indicated by a blue shaded area. The orientational dynamics

of the T1 state of [Au(CN)2
−]3 will be specifically discussed

below.

5. Orientational dynamics of [Au(CN)2−]3 extracted
from anisotropic scattering patterns

In a TRXSS experiment, a 2D scattering image arising from a
reaction intermediate in a solution is recorded using an area
detector. When the transient intermediate molecules are ran-
domly oriented in a solution, the scattering image is cen-
trosymmetric as described in section 3. In this case, a 1D
scattering curve is obtained by azimuthally integrating the 2D
image as a function of the momentum transfer vector, q, and
the 1D scattering curve contains the same structural infor-
mation as the original 2D scattering image. In contrast, when
the excited molecules are aligned photoselectively, an ani-
sotropic 2D scattering image is obtained. If the anisotropic 2D
scattering image is azimuthally integrated into a 1D scattering
curve, the information on the anisotropy of the 2D scattering
image will be obscured. Instead, to properly extract the ani-
sotropic information, azimuthal integration only needs to be

Figure 3. (a) Experimental difference scattering curves of [Au(CN)2
−]3 in a solution measured at time delays from 5.2 ps to 105.2 ps.

Difference scattering curves, ΔSV (black lines) and ΔSH (red lines), were obtained by the azimuthal integration of the vertical and horizontal
region of the 2D scattering images, respectively. (b) Experimental difference scattering curves of solvent heating induced by the excitation of
FeCl3 in an aqueous solution measured at time delays from 4.9 ps to 104.9 ps. ΔSV and ΔSH are shown with black and red curves,
respectively.
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performed for the truncated regions. To do so, we dissected
the scattering image into vertical and horizontal regions, as
shown in figure 1(a), and obtained two distinctly different
scattering curves, ΔSV(q, t) and ΔSH(q, t), by azimuthally
integrating the vertical and horizontal regions, respectively.
Specifically, ΔSV(q, t) and ΔSH(q, t) were obtained as fol-
lows:

S q t S t d S t dq q, , , 7V
4

4

3 4

5 4
( ) ( ) ( ) ( )ò òj jD = D + D

p

p

p

p

- /

/
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5 4

7 4
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/
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As can be expected from equation (6), anisotropically
oriented molecules will yield ΔSV(q, t) and ΔSH(q, t) distinct
from each other. The discrepancy between ΔSV(q, t) and
ΔSH(q, t) represents the degree of anisotropy of the scattering
image, which is directly related to the orientational distribu-
tion of the molecules. Thus, the decay of the discrepancy
between ΔSV(q, t) and ΔSH(q, t) indicates that the orienta-
tional distribution of the excited molecules changes from an
anisotropic distribution to an isotropic one, that is to say,
rotational dephasing.

In figure 3(a), ΔSV(q, t) and ΔSH(q, t) for the T1 state of
[Au(CN)2

−]3 are shown. The oscillatory features in ΔSV and
ΔSH at a 5.2 ps time delay clearly have different amplitudes
from each other. As the time delay increases, the difference
between the two curves becomes smaller and ΔSV and ΔSH
are identical at 105.2 ps. This observation suggests that the
transition dipole of the T1 state is aligned preferentially along

the laser polarization direction at a 5.2 ps time delay but the
orientation of the transition dipole becomes randomized over
time through rotational dephasing. For comparison, we per-
formed a separate TRXSS experiment on FeCl3 in a solution.
When FeCl3 is illuminated by a laser pulse at 267 nm, the
excited FeCl3 molecules do not undergo any structural
change, such as bond formation or breaking. Instead, the
excitation energy absorbed by the FeCl3 molecules is ther-
mally dissipated into the surrounding solvent molecules,
resulting in a temperature increase of the solvent at early time
delays and a density decrease of the solvent at late time
delays. Such collective structural changes in solvent mole-
cules give rise to distinct difference scattering signals of
solvent heating [42]. If the solute-to-solvent heat transfer and
the subsequent solvent-to-solvent heat transfer occur aniso-
tropically, the collective structural change in solvent mole-
cules should occur favorably in a certain direction, thus
yielding an anisotropic scattering pattern. We examined
whether the scattering images arising from solvent heating
contain any anisotropy. As can be seen in figure 3(b), ΔSV(q,
t) and ΔSH(q, t) of the scattering signal arising from solvent
heating are identical to each other in the entire time range of
the TRXSS measurement. The lack of anisotropy in the
scattering patterns of solvent heating indicates that solute-to-
solvent heat transfer does not induce any observable aniso-
tropic distribution of the heated solvent molecules within the
available time resolution.

To quantify the degree of anisotropy reflected in the
scattering images of [Au(CN)2

−]3, we calculated the transient
anisotropy, r(t), for the scattering image at each time delay as

Figure 4. Transient anisotropy of [Au(CN)2
−]3 (black circles) and solvent heating (blue circles) extracted from the TRXSS measurement. A

high anisotropy value is obtained when the discrepancy betweenΔSH andΔSV is large. The transient anisotropy of [Au(CN)2
−]3 decays over

time and can be fit with a single exponential with a time constant of 13±4 ps. In contrast, the transient anisotropy arising from solvent
heating is small and stays constant over time.
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follows:
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where σH(qi, t) and σV(qi, t) are the standard deviations of
ΔSH(qi, t) and ΔSV(qi, t), respectively, at each q-point
determined from 50 independent measurements. To consider
the experimental noise at each q-point, the difference between
ΔSH(q, t) and ΔSH(q, t) at each q-point was divided by the

corresponding standard deviation, q t q t, ,H i V i
2 2( ) ( )s s+ , as

can be seen in equation (9). The summation (or integration)
in the q-domain was performed in the q-range from 1.0 Å–1

to 6.5 Å–1. To account for the time-dependent amplitude
change of the time-resolved difference scattering signal, we
normalized the transient anisotropy by further dividing
the difference between ΔSH(q, t) and ΔSH(q, t) by the
total area under the ΔSH(q, t) and ΔSH(q, t) curves,

S q t S q t, , ,i H i i V i( ) ( )å D + å D at each time point. The
calculated r(t) represents the degree of anisotropy in the
transient orientational distribution of the excited molecules in
a solution. As the discrepancy between ΔSH(q, t) and ΔSV(q,
t) becomes larger, a higher r(t) value is obtained, as expected
from equation (9).

The time profiles of r(t) for [Au(CN)2
−]3 and FeCl3 in

the time range from 5.2 ps to 105.2 ps are shown in figure 4. It
can clearly be seen that the r(t) of [Au(CN)2

−]3 decays over
time. In contrast, the r(t) of FeCl3 stays constant, as was
expected from the lack of anisotropy in figure 3(b). Because
the T1 state is the only dominant species in the time range of
5.2–100 ps as shown in figure 2(b), the decay of r(t) must
represent the orientational dynamics of the T1 state. The
observed r(t) decay of [Au(CN)2

−]3 can be fit with a single
exponential with a time constant of 13 (±4) ps, which cor-
responds to the rotational dephasing time of [Au(CN)2

−]3.
The rotational dephasing time of [Au(CN)2

−]3 is in good
agreement with the theoretical value (∼10 ps) predicted using
the Stokes–Einstein equation for a sphere with the same
volume as a [Au(CN)2

−]3 molecule. The slightly slower
orientational dynamics obtained from the experiment may
result from the nonspherical shape of [Au(CN)2

−]3, which
will experience a larger frictional force than the sphere.

6. Conclusion

The rotational dephasing of a gold trimer complex, [Au
(CN)2

−]3 was investigated by femtosecond anisotropic x-ray
solution scattering using ultrashort x-ray pulses generated by
an XFEL. The anisotropic scattering patterns provide infor-
mation on molecular orientation and thus increase the infor-
mation content of TRXSS data beyond the intramolecular
structure. Consideration of anisotropy in scattering patterns

has now become more important with the advent of XFEL
because they are necessarily observed on time scales from
femtoseconds to picoseconds. Our present work offers a
strategy for the data analysis of anisotropic scattering patterns
measured in femtosecond x-ray scattering experiments.
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